barrier/ext/gmock/test/gmock-generated-matchers_te...

1342 lines
43 KiB
C++
Raw Permalink Normal View History

// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in matchers generated by a script.
// Silence warning C4244: 'initializing': conversion from 'int' to 'short',
// possible loss of data and C4100, unreferenced local parameter
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4244)
# pragma warning(disable:4100)
#endif
#include "gmock/gmock-generated-matchers.h"
#include <list>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"
namespace {
using std::list;
using std::map;
using std::pair;
using std::set;
using std::stringstream;
using std::vector;
using testing::get;
using testing::make_tuple;
using testing::tuple;
using testing::_;
using testing::AllOf;
using testing::AnyOf;
using testing::Args;
using testing::Contains;
using testing::ElementsAre;
using testing::ElementsAreArray;
using testing::Eq;
using testing::Ge;
using testing::Gt;
using testing::Le;
using testing::Lt;
using testing::MakeMatcher;
using testing::Matcher;
using testing::MatcherInterface;
using testing::MatchResultListener;
using testing::Ne;
using testing::Not;
using testing::Pointee;
using testing::PrintToString;
using testing::Ref;
using testing::StaticAssertTypeEq;
using testing::StrEq;
using testing::Value;
using testing::internal::ElementsAreArrayMatcher;
// Returns the description of the given matcher.
template <typename T>
std::string Describe(const Matcher<T>& m) {
stringstream ss;
m.DescribeTo(&ss);
return ss.str();
}
// Returns the description of the negation of the given matcher.
template <typename T>
std::string DescribeNegation(const Matcher<T>& m) {
stringstream ss;
m.DescribeNegationTo(&ss);
return ss.str();
}
// Returns the reason why x matches, or doesn't match, m.
template <typename MatcherType, typename Value>
std::string Explain(const MatcherType& m, const Value& x) {
stringstream ss;
m.ExplainMatchResultTo(x, &ss);
return ss.str();
}
// Tests Args<k0, ..., kn>(m).
TEST(ArgsTest, AcceptsZeroTemplateArg) {
const tuple<int, bool> t(5, true);
EXPECT_THAT(t, Args<>(Eq(tuple<>())));
EXPECT_THAT(t, Not(Args<>(Ne(tuple<>()))));
}
TEST(ArgsTest, AcceptsOneTemplateArg) {
const tuple<int, bool> t(5, true);
EXPECT_THAT(t, Args<0>(Eq(make_tuple(5))));
EXPECT_THAT(t, Args<1>(Eq(make_tuple(true))));
EXPECT_THAT(t, Not(Args<1>(Eq(make_tuple(false)))));
}
TEST(ArgsTest, AcceptsTwoTemplateArgs) {
const tuple<short, int, long> t(4, 5, 6L); // NOLINT
EXPECT_THAT(t, (Args<0, 1>(Lt())));
EXPECT_THAT(t, (Args<1, 2>(Lt())));
EXPECT_THAT(t, Not(Args<0, 2>(Gt())));
}
TEST(ArgsTest, AcceptsRepeatedTemplateArgs) {
const tuple<short, int, long> t(4, 5, 6L); // NOLINT
EXPECT_THAT(t, (Args<0, 0>(Eq())));
EXPECT_THAT(t, Not(Args<1, 1>(Ne())));
}
TEST(ArgsTest, AcceptsDecreasingTemplateArgs) {
const tuple<short, int, long> t(4, 5, 6L); // NOLINT
EXPECT_THAT(t, (Args<2, 0>(Gt())));
EXPECT_THAT(t, Not(Args<2, 1>(Lt())));
}
// The MATCHER*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma. Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
MATCHER(SumIsZero, "") {
return get<0>(arg) + get<1>(arg) + get<2>(arg) == 0;
}
TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) {
EXPECT_THAT(make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero())));
EXPECT_THAT(make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero())));
}
TEST(ArgsTest, CanBeNested) {
const tuple<short, int, long, int> t(4, 5, 6L, 6); // NOLINT
EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq()))));
EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt()))));
}
TEST(ArgsTest, CanMatchTupleByValue) {
typedef tuple<char, int, int> Tuple3;
const Matcher<Tuple3> m = Args<1, 2>(Lt());
EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2)));
EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2)));
}
TEST(ArgsTest, CanMatchTupleByReference) {
typedef tuple<char, char, int> Tuple3;
const Matcher<const Tuple3&> m = Args<0, 1>(Lt());
EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2)));
EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2)));
}
// Validates that arg is printed as str.
MATCHER_P(PrintsAs, str, "") {
return testing::PrintToString(arg) == str;
}
TEST(ArgsTest, AcceptsTenTemplateArgs) {
EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
}
TEST(ArgsTest, DescirbesSelfCorrectly) {
const Matcher<tuple<int, bool, char> > m = Args<2, 0>(Lt());
EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where "
"the first < the second",
Describe(m));
}
TEST(ArgsTest, DescirbesNestedArgsCorrectly) {
const Matcher<const tuple<int, bool, char, int>&> m =
Args<0, 2, 3>(Args<2, 0>(Lt()));
EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple "
"whose fields (#2, #0) are a pair where the first < the second",
Describe(m));
}
TEST(ArgsTest, DescribesNegationCorrectly) {
const Matcher<tuple<int, char> > m = Args<1, 0>(Gt());
EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair "
"where the first > the second",
DescribeNegation(m));
}
TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) {
const Matcher<tuple<bool, int, int> > m = Args<1, 2>(Eq());
EXPECT_EQ("whose fields (#1, #2) are (42, 42)",
Explain(m, make_tuple(false, 42, 42)));
EXPECT_EQ("whose fields (#1, #2) are (42, 43)",
Explain(m, make_tuple(false, 42, 43)));
}
// For testing Args<>'s explanation.
class LessThanMatcher : public MatcherInterface<tuple<char, int> > {
public:
virtual void DescribeTo(::std::ostream* os) const {}
virtual bool MatchAndExplain(tuple<char, int> value,
MatchResultListener* listener) const {
const int diff = get<0>(value) - get<1>(value);
if (diff > 0) {
*listener << "where the first value is " << diff
<< " more than the second";
}
return diff < 0;
}
};
Matcher<tuple<char, int> > LessThan() {
return MakeMatcher(new LessThanMatcher);
}
TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) {
const Matcher<tuple<char, int, int> > m = Args<0, 2>(LessThan());
EXPECT_EQ("whose fields (#0, #2) are ('a' (97, 0x61), 42), "
"where the first value is 55 more than the second",
Explain(m, make_tuple('a', 42, 42)));
EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)",
Explain(m, make_tuple('\0', 42, 43)));
}
// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> {
public:
explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "is greater than " << rhs_;
}
virtual bool MatchAndExplain(int lhs,
MatchResultListener* listener) const {
const int diff = lhs - rhs_;
if (diff > 0) {
*listener << "which is " << diff << " more than " << rhs_;
} else if (diff == 0) {
*listener << "which is the same as " << rhs_;
} else {
*listener << "which is " << -diff << " less than " << rhs_;
}
return lhs > rhs_;
}
private:
int rhs_;
};
Matcher<int> GreaterThan(int n) {
return MakeMatcher(new GreaterThanMatcher(n));
}
// Tests for ElementsAre().
TEST(ElementsAreTest, CanDescribeExpectingNoElement) {
Matcher<const vector<int>&> m = ElementsAre();
EXPECT_EQ("is empty", Describe(m));
}
TEST(ElementsAreTest, CanDescribeExpectingOneElement) {
Matcher<vector<int> > m = ElementsAre(Gt(5));
EXPECT_EQ("has 1 element that is > 5", Describe(m));
}
TEST(ElementsAreTest, CanDescribeExpectingManyElements) {
Matcher<list<std::string> > m = ElementsAre(StrEq("one"), "two");
EXPECT_EQ("has 2 elements where\n"
"element #0 is equal to \"one\",\n"
"element #1 is equal to \"two\"", Describe(m));
}
TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) {
Matcher<vector<int> > m = ElementsAre();
EXPECT_EQ("isn't empty", DescribeNegation(m));
}
TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) {
Matcher<const list<int>& > m = ElementsAre(Gt(5));
EXPECT_EQ("doesn't have 1 element, or\n"
"element #0 isn't > 5", DescribeNegation(m));
}
TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) {
Matcher<const list<std::string>&> m = ElementsAre("one", "two");
EXPECT_EQ("doesn't have 2 elements, or\n"
"element #0 isn't equal to \"one\", or\n"
"element #1 isn't equal to \"two\"", DescribeNegation(m));
}
TEST(ElementsAreTest, DoesNotExplainTrivialMatch) {
Matcher<const list<int>& > m = ElementsAre(1, Ne(2));
list<int> test_list;
test_list.push_back(1);
test_list.push_back(3);
EXPECT_EQ("", Explain(m, test_list)); // No need to explain anything.
}
TEST(ElementsAreTest, ExplainsNonTrivialMatch) {
Matcher<const vector<int>& > m =
ElementsAre(GreaterThan(1), 0, GreaterThan(2));
const int a[] = { 10, 0, 100 };
vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_EQ("whose element #0 matches, which is 9 more than 1,\n"
"and whose element #2 matches, which is 98 more than 2",
Explain(m, test_vector));
}
TEST(ElementsAreTest, CanExplainMismatchWrongSize) {
Matcher<const list<int>& > m = ElementsAre(1, 3);
list<int> test_list;
// No need to explain when the container is empty.
EXPECT_EQ("", Explain(m, test_list));
test_list.push_back(1);
EXPECT_EQ("which has 1 element", Explain(m, test_list));
}
TEST(ElementsAreTest, CanExplainMismatchRightSize) {
Matcher<const vector<int>& > m = ElementsAre(1, GreaterThan(5));
vector<int> v;
v.push_back(2);
v.push_back(1);
EXPECT_EQ("whose element #0 doesn't match", Explain(m, v));
v[0] = 1;
EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5",
Explain(m, v));
}
TEST(ElementsAreTest, MatchesOneElementVector) {
vector<std::string> test_vector;
test_vector.push_back("test string");
EXPECT_THAT(test_vector, ElementsAre(StrEq("test string")));
}
TEST(ElementsAreTest, MatchesOneElementList) {
list<std::string> test_list;
test_list.push_back("test string");
EXPECT_THAT(test_list, ElementsAre("test string"));
}
TEST(ElementsAreTest, MatchesThreeElementVector) {
vector<std::string> test_vector;
test_vector.push_back("one");
test_vector.push_back("two");
test_vector.push_back("three");
EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _));
}
TEST(ElementsAreTest, MatchesOneElementEqMatcher) {
vector<int> test_vector;
test_vector.push_back(4);
EXPECT_THAT(test_vector, ElementsAre(Eq(4)));
}
TEST(ElementsAreTest, MatchesOneElementAnyMatcher) {
vector<int> test_vector;
test_vector.push_back(4);
EXPECT_THAT(test_vector, ElementsAre(_));
}
TEST(ElementsAreTest, MatchesOneElementValue) {
vector<int> test_vector;
test_vector.push_back(4);
EXPECT_THAT(test_vector, ElementsAre(4));
}
TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) {
vector<int> test_vector;
test_vector.push_back(1);
test_vector.push_back(2);
test_vector.push_back(3);
EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _));
}
TEST(ElementsAreTest, MatchesTenElementVector) {
const int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(test_vector,
// The element list can contain values and/or matchers
// of different types.
ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _));
}
TEST(ElementsAreTest, DoesNotMatchWrongSize) {
vector<std::string> test_vector;
test_vector.push_back("test string");
test_vector.push_back("test string");
Matcher<vector<std::string> > m = ElementsAre(StrEq("test string"));
EXPECT_FALSE(m.Matches(test_vector));
}
TEST(ElementsAreTest, DoesNotMatchWrongValue) {
vector<std::string> test_vector;
test_vector.push_back("other string");
Matcher<vector<std::string> > m = ElementsAre(StrEq("test string"));
EXPECT_FALSE(m.Matches(test_vector));
}
TEST(ElementsAreTest, DoesNotMatchWrongOrder) {
vector<std::string> test_vector;
test_vector.push_back("one");
test_vector.push_back("three");
test_vector.push_back("two");
Matcher<vector<std::string> > m =
ElementsAre(StrEq("one"), StrEq("two"), StrEq("three"));
EXPECT_FALSE(m.Matches(test_vector));
}
TEST(ElementsAreTest, WorksForNestedContainer) {
const char* strings[] = {
"Hi",
"world"
};
vector<list<char> > nested;
for (size_t i = 0; i < GTEST_ARRAY_SIZE_(strings); i++) {
nested.push_back(list<char>(strings[i], strings[i] + strlen(strings[i])));
}
EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')),
ElementsAre('w', 'o', _, _, 'd')));
EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'),
ElementsAre('w', 'o', _, _, 'd'))));
}
TEST(ElementsAreTest, WorksWithByRefElementMatchers) {
int a[] = { 0, 1, 2 };
vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2])));
EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2]))));
}
TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) {
int a[] = { 0, 1, 2 };
vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _)));
EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3))));
}
TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) {
int array[] = { 0, 1, 2 };
EXPECT_THAT(array, ElementsAre(0, 1, _));
EXPECT_THAT(array, Not(ElementsAre(1, _, _)));
EXPECT_THAT(array, Not(ElementsAre(0, _)));
}
class NativeArrayPassedAsPointerAndSize {
public:
NativeArrayPassedAsPointerAndSize() {}
MOCK_METHOD2(Helper, void(int* array, int size));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize);
};
TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) {
int array[] = { 0, 1 };
::testing::tuple<int*, size_t> array_as_tuple(array, 2);
EXPECT_THAT(array_as_tuple, ElementsAre(0, 1));
EXPECT_THAT(array_as_tuple, Not(ElementsAre(0)));
NativeArrayPassedAsPointerAndSize helper;
EXPECT_CALL(helper, Helper(_, _))
.With(ElementsAre(0, 1));
helper.Helper(array, 2);
}
TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) {
const char a2[][3] = { "hi", "lo" };
EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'),
ElementsAre('l', 'o', '\0')));
EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo")));
EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')),
ElementsAre('l', 'o', '\0')));
}
TEST(ElementsAreTest, AcceptsStringLiteral) {
std::string array[] = {"hi", "one", "two"};
EXPECT_THAT(array, ElementsAre("hi", "one", "two"));
EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too")));
}
#ifndef _MSC_VER
// The following test passes a value of type const char[] to a
// function template that expects const T&. Some versions of MSVC
// generates a compiler error C2665 for that. We believe it's a bug
// in MSVC. Therefore this test is #if-ed out for MSVC.
// Declared here with the size unknown. Defined AFTER the following test.
extern const char kHi[];
TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) {
// The size of kHi is not known in this test, but ElementsAre() should
// still accept it.
std::string array1[] = {"hi"};
EXPECT_THAT(array1, ElementsAre(kHi));
std::string array2[] = {"ho"};
EXPECT_THAT(array2, Not(ElementsAre(kHi)));
}
const char kHi[] = "hi";
#endif // _MSC_VER
TEST(ElementsAreTest, MakesCopyOfArguments) {
int x = 1;
int y = 2;
// This should make a copy of x and y.
::testing::internal::ElementsAreMatcher<testing::tuple<int, int> >
polymorphic_matcher = ElementsAre(x, y);
// Changing x and y now shouldn't affect the meaning of the above matcher.
x = y = 0;
const int array1[] = { 1, 2 };
EXPECT_THAT(array1, polymorphic_matcher);
const int array2[] = { 0, 0 };
EXPECT_THAT(array2, Not(polymorphic_matcher));
}
// Tests for ElementsAreArray(). Since ElementsAreArray() shares most
// of the implementation with ElementsAre(), we don't test it as
// thoroughly here.
TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) {
const int a[] = { 1, 2, 3 };
vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(test_vector, ElementsAreArray(a));
test_vector[2] = 0;
EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
}
TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) {
const char* a[] = { "one", "two", "three" };
vector<std::string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(test_vector, ElementsAreArray(a, GTEST_ARRAY_SIZE_(a)));
const char** p = a;
test_vector[0] = "1";
EXPECT_THAT(test_vector, Not(ElementsAreArray(p, GTEST_ARRAY_SIZE_(a))));
}
TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) {
const char* a[] = { "one", "two", "three" };
vector<std::string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(test_vector, ElementsAreArray(a));
test_vector[0] = "1";
EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
}
TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) {
const Matcher<std::string> kMatcherArray[] = {StrEq("one"), StrEq("two"),
StrEq("three")};
vector<std::string> test_vector;
test_vector.push_back("one");
test_vector.push_back("two");
test_vector.push_back("three");
EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray));
test_vector.push_back("three");
EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray)));
}
TEST(ElementsAreArrayTest, CanBeCreatedWithVector) {
const int a[] = { 1, 2, 3 };
vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(test_vector, ElementsAreArray(expected));
test_vector.push_back(4);
EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
}
#if GTEST_HAS_STD_INITIALIZER_LIST_
TEST(ElementsAreArrayTest, TakesInitializerList) {
const int a[5] = { 1, 2, 3, 4, 5 };
EXPECT_THAT(a, ElementsAreArray({ 1, 2, 3, 4, 5 }));
EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 5, 4 })));
EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 4, 6 })));
}
TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) {
const std::string a[5] = {"a", "b", "c", "d", "e"};
EXPECT_THAT(a, ElementsAreArray({ "a", "b", "c", "d", "e" }));
EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "e", "d" })));
EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "d", "ef" })));
}
TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) {
const int a[5] = { 1, 2, 3, 4, 5 };
EXPECT_THAT(a, ElementsAreArray(
{ Eq(1), Eq(2), Eq(3), Eq(4), Eq(5) }));
EXPECT_THAT(a, Not(ElementsAreArray(
{ Eq(1), Eq(2), Eq(3), Eq(4), Eq(6) })));
}
TEST(ElementsAreArrayTest,
TakesInitializerListOfDifferentTypedMatchers) {
const int a[5] = { 1, 2, 3, 4, 5 };
// The compiler cannot infer the type of the initializer list if its
// elements have different types. We must explicitly specify the
// unified element type in this case.
EXPECT_THAT(a, ElementsAreArray<Matcher<int> >(
{ Eq(1), Ne(-2), Ge(3), Le(4), Eq(5) }));
EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int> >(
{ Eq(1), Ne(-2), Ge(3), Le(4), Eq(6) })));
}
#endif // GTEST_HAS_STD_INITIALIZER_LIST_
TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) {
const int a[] = { 1, 2, 3 };
const Matcher<int> kMatchers[] = { Eq(1), Eq(2), Eq(3) };
vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
const vector<Matcher<int> > expected(
kMatchers, kMatchers + GTEST_ARRAY_SIZE_(kMatchers));
EXPECT_THAT(test_vector, ElementsAreArray(expected));
test_vector.push_back(4);
EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
}
TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) {
const int a[] = { 1, 2, 3 };
const vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end()));
// Pointers are iterators, too.
EXPECT_THAT(test_vector, ElementsAreArray(a, a + GTEST_ARRAY_SIZE_(a)));
// The empty range of NULL pointers should also be okay.
int* const null_int = NULL;
EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int)));
EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int));
}
// Since ElementsAre() and ElementsAreArray() share much of the
// implementation, we only do a sanity test for native arrays here.
TEST(ElementsAreArrayTest, WorksWithNativeArray) {
::std::string a[] = { "hi", "ho" };
::std::string b[] = { "hi", "ho" };
EXPECT_THAT(a, ElementsAreArray(b));
EXPECT_THAT(a, ElementsAreArray(b, 2));
EXPECT_THAT(a, Not(ElementsAreArray(b, 1)));
}
TEST(ElementsAreArrayTest, SourceLifeSpan) {
const int a[] = { 1, 2, 3 };
vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
vector<int> expect(a, a + GTEST_ARRAY_SIZE_(a));
ElementsAreArrayMatcher<int> matcher_maker =
ElementsAreArray(expect.begin(), expect.end());
EXPECT_THAT(test_vector, matcher_maker);
// Changing in place the values that initialized matcher_maker should not
// affect matcher_maker anymore. It should have made its own copy of them.
typedef vector<int>::iterator Iter;
for (Iter it = expect.begin(); it != expect.end(); ++it) { *it += 10; }
EXPECT_THAT(test_vector, matcher_maker);
test_vector.push_back(3);
EXPECT_THAT(test_vector, Not(matcher_maker));
}
// Tests for the MATCHER*() macro family.
// Tests that a simple MATCHER() definition works.
MATCHER(IsEven, "") { return (arg % 2) == 0; }
TEST(MatcherMacroTest, Works) {
const Matcher<int> m = IsEven();
EXPECT_TRUE(m.Matches(6));
EXPECT_FALSE(m.Matches(7));
EXPECT_EQ("is even", Describe(m));
EXPECT_EQ("not (is even)", DescribeNegation(m));
EXPECT_EQ("", Explain(m, 6));
EXPECT_EQ("", Explain(m, 7));
}
// This also tests that the description string can reference 'negation'.
MATCHER(IsEven2, negation ? "is odd" : "is even") {
if ((arg % 2) == 0) {
// Verifies that we can stream to result_listener, a listener
// supplied by the MATCHER macro implicitly.
*result_listener << "OK";
return true;
} else {
*result_listener << "% 2 == " << (arg % 2);
return false;
}
}
// This also tests that the description string can reference matcher
// parameters.
MATCHER_P2(EqSumOf, x, y, std::string(negation ? "doesn't equal" : "equals") +
" the sum of " + PrintToString(x) + " and " +
PrintToString(y)) {
if (arg == (x + y)) {
*result_listener << "OK";
return true;
} else {
// Verifies that we can stream to the underlying stream of
// result_listener.
if (result_listener->stream() != NULL) {
*result_listener->stream() << "diff == " << (x + y - arg);
}
return false;
}
}
// Tests that the matcher description can reference 'negation' and the
// matcher parameters.
TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) {
const Matcher<int> m1 = IsEven2();
EXPECT_EQ("is even", Describe(m1));
EXPECT_EQ("is odd", DescribeNegation(m1));
const Matcher<int> m2 = EqSumOf(5, 9);
EXPECT_EQ("equals the sum of 5 and 9", Describe(m2));
EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2));
}
// Tests explaining match result in a MATCHER* macro.
TEST(MatcherMacroTest, CanExplainMatchResult) {
const Matcher<int> m1 = IsEven2();
EXPECT_EQ("OK", Explain(m1, 4));
EXPECT_EQ("% 2 == 1", Explain(m1, 5));
const Matcher<int> m2 = EqSumOf(1, 2);
EXPECT_EQ("OK", Explain(m2, 3));
EXPECT_EQ("diff == -1", Explain(m2, 4));
}
// Tests that the body of MATCHER() can reference the type of the
// value being matched.
MATCHER(IsEmptyString, "") {
StaticAssertTypeEq< ::std::string, arg_type>();
return arg == "";
}
MATCHER(IsEmptyStringByRef, "") {
StaticAssertTypeEq<const ::std::string&, arg_type>();
return arg == "";
}
TEST(MatcherMacroTest, CanReferenceArgType) {
const Matcher< ::std::string> m1 = IsEmptyString();
EXPECT_TRUE(m1.Matches(""));
const Matcher<const ::std::string&> m2 = IsEmptyStringByRef();
EXPECT_TRUE(m2.Matches(""));
}
// Tests that MATCHER() can be used in a namespace.
namespace matcher_test {
MATCHER(IsOdd, "") { return (arg % 2) != 0; }
} // namespace matcher_test
TEST(MatcherMacroTest, WorksInNamespace) {
Matcher<int> m = matcher_test::IsOdd();
EXPECT_FALSE(m.Matches(4));
EXPECT_TRUE(m.Matches(5));
}
// Tests that Value() can be used to compose matchers.
MATCHER(IsPositiveOdd, "") {
return Value(arg, matcher_test::IsOdd()) && arg > 0;
}
TEST(MatcherMacroTest, CanBeComposedUsingValue) {
EXPECT_THAT(3, IsPositiveOdd());
EXPECT_THAT(4, Not(IsPositiveOdd()));
EXPECT_THAT(-1, Not(IsPositiveOdd()));
}
// Tests that a simple MATCHER_P() definition works.
MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; }
TEST(MatcherPMacroTest, Works) {
const Matcher<int> m = IsGreaterThan32And(5);
EXPECT_TRUE(m.Matches(36));
EXPECT_FALSE(m.Matches(5));
EXPECT_EQ("is greater than 32 and 5", Describe(m));
EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
EXPECT_EQ("", Explain(m, 36));
EXPECT_EQ("", Explain(m, 5));
}
// Tests that the description is calculated correctly from the matcher name.
MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; }
TEST(MatcherPMacroTest, GeneratesCorrectDescription) {
const Matcher<int> m = _is_Greater_Than32and_(5);
EXPECT_EQ("is greater than 32 and 5", Describe(m));
EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
EXPECT_EQ("", Explain(m, 36));
EXPECT_EQ("", Explain(m, 5));
}
// Tests that a MATCHER_P matcher can be explicitly instantiated with
// a reference parameter type.
class UncopyableFoo {
public:
explicit UncopyableFoo(char value) : value_(value) {}
private:
UncopyableFoo(const UncopyableFoo&);
void operator=(const UncopyableFoo&);
char value_;
};
MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; }
TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) {
UncopyableFoo foo1('1'), foo2('2');
const Matcher<const UncopyableFoo&> m =
ReferencesUncopyable<const UncopyableFoo&>(foo1);
EXPECT_TRUE(m.Matches(foo1));
EXPECT_FALSE(m.Matches(foo2));
// We don't want the address of the parameter printed, as most
// likely it will just annoy the user. If the address is
// interesting, the user should consider passing the parameter by
// pointer instead.
EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m));
}
// Tests that the body of MATCHER_Pn() can reference the parameter
// types.
MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") {
StaticAssertTypeEq<int, foo_type>();
StaticAssertTypeEq<long, bar_type>(); // NOLINT
StaticAssertTypeEq<char, baz_type>();
return arg == 0;
}
TEST(MatcherPnMacroTest, CanReferenceParamTypes) {
EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a'));
}
// Tests that a MATCHER_Pn matcher can be explicitly instantiated with
// reference parameter types.
MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") {
return &arg == &variable1 || &arg == &variable2;
}
TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) {
UncopyableFoo foo1('1'), foo2('2'), foo3('3');
const Matcher<const UncopyableFoo&> m =
ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);
EXPECT_TRUE(m.Matches(foo1));
EXPECT_TRUE(m.Matches(foo2));
EXPECT_FALSE(m.Matches(foo3));
}
TEST(MatcherPnMacroTest,
GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) {
UncopyableFoo foo1('1'), foo2('2');
const Matcher<const UncopyableFoo&> m =
ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);
// We don't want the addresses of the parameters printed, as most
// likely they will just annoy the user. If the addresses are
// interesting, the user should consider passing the parameters by
// pointers instead.
EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)",
Describe(m));
}
// Tests that a simple MATCHER_P2() definition works.
MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; }
TEST(MatcherPnMacroTest, Works) {
const Matcher<const long&> m = IsNotInClosedRange(10, 20); // NOLINT
EXPECT_TRUE(m.Matches(36L));
EXPECT_FALSE(m.Matches(15L));
EXPECT_EQ("is not in closed range (10, 20)", Describe(m));
EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m));
EXPECT_EQ("", Explain(m, 36L));
EXPECT_EQ("", Explain(m, 15L));
}
// Tests that MATCHER*() definitions can be overloaded on the number
// of parameters; also tests MATCHER_Pn() where n >= 3.
MATCHER(EqualsSumOf, "") { return arg == 0; }
MATCHER_P(EqualsSumOf, a, "") { return arg == a; }
MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; }
MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; }
MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; }
MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; }
MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") {
return arg == a + b + c + d + e + f;
}
MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") {
return arg == a + b + c + d + e + f + g;
}
MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") {
return arg == a + b + c + d + e + f + g + h;
}
MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") {
return arg == a + b + c + d + e + f + g + h + i;
}
MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") {
return arg == a + b + c + d + e + f + g + h + i + j;
}
TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) {
EXPECT_THAT(0, EqualsSumOf());
EXPECT_THAT(1, EqualsSumOf(1));
EXPECT_THAT(12, EqualsSumOf(10, 2));
EXPECT_THAT(123, EqualsSumOf(100, 20, 3));
EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4));
EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5));
EXPECT_THAT("abcdef",
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'));
EXPECT_THAT("abcdefg",
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'));
EXPECT_THAT("abcdefgh",
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
"h"));
EXPECT_THAT("abcdefghi",
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
"h", 'i'));
EXPECT_THAT("abcdefghij",
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
"h", 'i', ::std::string("j")));
EXPECT_THAT(1, Not(EqualsSumOf()));
EXPECT_THAT(-1, Not(EqualsSumOf(1)));
EXPECT_THAT(-12, Not(EqualsSumOf(10, 2)));
EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3)));
EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4)));
EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5)));
EXPECT_THAT("abcdef ",
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')));
EXPECT_THAT("abcdefg ",
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f',
'g')));
EXPECT_THAT("abcdefgh ",
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
"h")));
EXPECT_THAT("abcdefghi ",
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
"h", 'i')));
EXPECT_THAT("abcdefghij ",
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
"h", 'i', ::std::string("j"))));
}
// Tests that a MATCHER_Pn() definition can be instantiated with any
// compatible parameter types.
TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) {
EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3)));
EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d"));
EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3))));
EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d")));
}
// Tests that the matcher body can promote the parameter types.
MATCHER_P2(EqConcat, prefix, suffix, "") {
// The following lines promote the two parameters to desired types.
std::string prefix_str(prefix);
char suffix_char = static_cast<char>(suffix);
return arg == prefix_str + suffix_char;
}
TEST(MatcherPnMacroTest, SimpleTypePromotion) {
Matcher<std::string> no_promo =
EqConcat(std::string("foo"), 't');
Matcher<const std::string&> promo =
EqConcat("foo", static_cast<int>('t'));
EXPECT_FALSE(no_promo.Matches("fool"));
EXPECT_FALSE(promo.Matches("fool"));
EXPECT_TRUE(no_promo.Matches("foot"));
EXPECT_TRUE(promo.Matches("foot"));
}
// Verifies the type of a MATCHER*.
TEST(MatcherPnMacroTest, TypesAreCorrect) {
// EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable.
EqualsSumOfMatcher a0 = EqualsSumOf();
// EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable.
EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1);
// EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk
// variable, and so on.
EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2');
EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3');
EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4');
EqualsSumOfMatcherP5<int, int, int, int, char> a5 =
EqualsSumOf(1, 2, 3, 4, '5');
EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 =
EqualsSumOf(1, 2, 3, 4, 5, '6');
EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 =
EqualsSumOf(1, 2, 3, 4, 5, 6, '7');
EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 =
EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8');
EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 =
EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9');
EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 =
EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');
// Avoid "unused variable" warnings.
(void)a0;
(void)a1;
(void)a2;
(void)a3;
(void)a4;
(void)a5;
(void)a6;
(void)a7;
(void)a8;
(void)a9;
(void)a10;
}
// Tests that matcher-typed parameters can be used in Value() inside a
// MATCHER_Pn definition.
// Succeeds if arg matches exactly 2 of the 3 matchers.
MATCHER_P3(TwoOf, m1, m2, m3, "") {
const int count = static_cast<int>(Value(arg, m1))
+ static_cast<int>(Value(arg, m2)) + static_cast<int>(Value(arg, m3));
return count == 2;
}
TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) {
EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10)));
EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0))));
}
// Tests Contains().
TEST(ContainsTest, ListMatchesWhenElementIsInContainer) {
list<int> some_list;
some_list.push_back(3);
some_list.push_back(1);
some_list.push_back(2);
EXPECT_THAT(some_list, Contains(1));
EXPECT_THAT(some_list, Contains(Gt(2.5)));
EXPECT_THAT(some_list, Contains(Eq(2.0f)));
list<std::string> another_list;
another_list.push_back("fee");
another_list.push_back("fie");
another_list.push_back("foe");
another_list.push_back("fum");
EXPECT_THAT(another_list, Contains(std::string("fee")));
}
TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) {
list<int> some_list;
some_list.push_back(3);
some_list.push_back(1);
EXPECT_THAT(some_list, Not(Contains(4)));
}
TEST(ContainsTest, SetMatchesWhenElementIsInContainer) {
set<int> some_set;
some_set.insert(3);
some_set.insert(1);
some_set.insert(2);
EXPECT_THAT(some_set, Contains(Eq(1.0)));
EXPECT_THAT(some_set, Contains(Eq(3.0f)));
EXPECT_THAT(some_set, Contains(2));
set<const char*> another_set;
another_set.insert("fee");
another_set.insert("fie");
another_set.insert("foe");
another_set.insert("fum");
EXPECT_THAT(another_set, Contains(Eq(std::string("fum"))));
}
TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) {
set<int> some_set;
some_set.insert(3);
some_set.insert(1);
EXPECT_THAT(some_set, Not(Contains(4)));
set<const char*> c_string_set;
c_string_set.insert("hello");
EXPECT_THAT(c_string_set, Not(Contains(std::string("hello").c_str())));
}
TEST(ContainsTest, ExplainsMatchResultCorrectly) {
const int a[2] = { 1, 2 };
Matcher<const int (&)[2]> m = Contains(2);
EXPECT_EQ("whose element #1 matches", Explain(m, a));
m = Contains(3);
EXPECT_EQ("", Explain(m, a));
m = Contains(GreaterThan(0));
EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a));
m = Contains(GreaterThan(10));
EXPECT_EQ("", Explain(m, a));
}
TEST(ContainsTest, DescribesItselfCorrectly) {
Matcher<vector<int> > m = Contains(1);
EXPECT_EQ("contains at least one element that is equal to 1", Describe(m));
Matcher<vector<int> > m2 = Not(m);
EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2));
}
TEST(ContainsTest, MapMatchesWhenElementIsInContainer) {
map<const char*, int> my_map;
const char* bar = "a string";
my_map[bar] = 2;
EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2)));
map<std::string, int> another_map;
another_map["fee"] = 1;
another_map["fie"] = 2;
another_map["foe"] = 3;
another_map["fum"] = 4;
EXPECT_THAT(another_map,
Contains(pair<const std::string, int>(std::string("fee"), 1)));
EXPECT_THAT(another_map, Contains(pair<const std::string, int>("fie", 2)));
}
TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) {
map<int, int> some_map;
some_map[1] = 11;
some_map[2] = 22;
EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23))));
}
TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) {
const char* string_array[] = { "fee", "fie", "foe", "fum" };
EXPECT_THAT(string_array, Contains(Eq(std::string("fum"))));
}
TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) {
int int_array[] = { 1, 2, 3, 4 };
EXPECT_THAT(int_array, Not(Contains(5)));
}
TEST(ContainsTest, AcceptsMatcher) {
const int a[] = { 1, 2, 3 };
EXPECT_THAT(a, Contains(Gt(2)));
EXPECT_THAT(a, Not(Contains(Gt(4))));
}
TEST(ContainsTest, WorksForNativeArrayAsTuple) {
const int a[] = { 1, 2 };
const int* const pointer = a;
EXPECT_THAT(make_tuple(pointer, 2), Contains(1));
EXPECT_THAT(make_tuple(pointer, 2), Not(Contains(Gt(3))));
}
TEST(ContainsTest, WorksForTwoDimensionalNativeArray) {
int a[][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6)));
EXPECT_THAT(a, Contains(Contains(5)));
EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5))));
EXPECT_THAT(a, Contains(Not(Contains(5))));
}
TEST(AllOfTest, HugeMatcher) {
// Verify that using AllOf with many arguments doesn't cause
// the compiler to exceed template instantiation depth limit.
EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _,
testing::AllOf(_, _, _, _, _, _, _, _, _, _)));
}
TEST(AnyOfTest, HugeMatcher) {
// Verify that using AnyOf with many arguments doesn't cause
// the compiler to exceed template instantiation depth limit.
EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _,
testing::AnyOf(_, _, _, _, _, _, _, _, _, _)));
}
namespace adl_test {
// Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf
// don't issue unqualified recursive calls. If they do, the argument dependent
// name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found
// as a candidate and the compilation will break due to an ambiguous overload.
// The matcher must be in the same namespace as AllOf/AnyOf to make argument
// dependent lookup find those.
MATCHER(M, "") { return true; }
template <typename T1, typename T2>
bool AllOf(const T1& t1, const T2& t2) { return true; }
TEST(AllOfTest, DoesNotCallAllOfUnqualified) {
EXPECT_THAT(42, testing::AllOf(
M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
}
template <typename T1, typename T2> bool
AnyOf(const T1& t1, const T2& t2) { return true; }
TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) {
EXPECT_THAT(42, testing::AnyOf(
M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
}
} // namespace adl_test
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#if GTEST_LANG_CXX11
TEST(AllOfTest, WorksOnMoveOnlyType) {
std::unique_ptr<int> p(new int(3));
EXPECT_THAT(p, AllOf(Pointee(Eq(3)), Pointee(Gt(0)), Pointee(Lt(5))));
EXPECT_THAT(p, Not(AllOf(Pointee(Eq(3)), Pointee(Gt(0)), Pointee(Lt(3)))));
}
TEST(AnyOfTest, WorksOnMoveOnlyType) {
std::unique_ptr<int> p(new int(3));
EXPECT_THAT(p, AnyOf(Pointee(Eq(5)), Pointee(Lt(0)), Pointee(Lt(5))));
EXPECT_THAT(p, Not(AnyOf(Pointee(Eq(5)), Pointee(Lt(0)), Pointee(Gt(5)))));
}
MATCHER(IsNotNull, "") {
return arg != nullptr;
}
// Verifies that a matcher defined using MATCHER() can work on
// move-only types.
TEST(MatcherMacroTest, WorksOnMoveOnlyType) {
std::unique_ptr<int> p(new int(3));
EXPECT_THAT(p, IsNotNull());
EXPECT_THAT(std::unique_ptr<int>(), Not(IsNotNull()));
}
MATCHER_P(UniquePointee, pointee, "") {
return *arg == pointee;
}
// Verifies that a matcher defined using MATCHER_P*() can work on
// move-only types.
TEST(MatcherPMacroTest, WorksOnMoveOnlyType) {
std::unique_ptr<int> p(new int(3));
EXPECT_THAT(p, UniquePointee(3));
EXPECT_THAT(p, Not(UniquePointee(2)));
}
#endif // GTEST_LASNG_CXX11
} // namespace
#ifdef _MSC_VER
# pragma warning(pop)
#endif