barrier/lib/platform/CXWindowsKeyState.cpp

1011 lines
29 KiB
C++
Raw Normal View History

/*
* synergy -- mouse and keyboard sharing utility
* Copyright (C) 2003 Chris Schoeneman
*
* This package is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* found in the file COPYING that should have accompanied this file.
*
* This package is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "CXWindowsKeyState.h"
#include "CXWindowsUtil.h"
#include "CLog.h"
#include "CStringUtil.h"
#if X_DISPLAY_MISSING
# error X11 is required to build synergy
#else
# include <X11/X.h>
# include <X11/Xutil.h>
# define XK_MISCELLANY
# define XK_XKB_KEYS
# include <X11/keysymdef.h>
// these should be in XF86keysym.h but there are several versions of
// that file floating around and not all have all symbols and none of
// them provide any form of versioning so we just define 'em here.
#define XF86XK_Standby 0x1008FF10
#define XF86XK_AudioLowerVolume 0x1008FF11
#define XF86XK_AudioMute 0x1008FF12
#define XF86XK_AudioRaiseVolume 0x1008FF13
#define XF86XK_AudioPlay 0x1008FF14
#define XF86XK_AudioStop 0x1008FF15
#define XF86XK_AudioPrev 0x1008FF16
#define XF86XK_AudioNext 0x1008FF17
#define XF86XK_HomePage 0x1008FF18
#define XF86XK_Mail 0x1008FF19
#define XF86XK_Start 0x1008FF1A
#define XF86XK_Search 0x1008FF1B
#define XF86XK_AudioRecord 0x1008FF1C
#define XF86XK_Calculator 0x1008FF1D
#define XF86XK_Memo 0x1008FF1E
#define XF86XK_ToDoList 0x1008FF1F
#define XF86XK_Calendar 0x1008FF20
#define XF86XK_PowerDown 0x1008FF21
#define XF86XK_ContrastAdjust 0x1008FF22
#define XF86XK_RockerUp 0x1008FF23
#define XF86XK_RockerDown 0x1008FF24
#define XF86XK_RockerEnter 0x1008FF25
#define XF86XK_Back 0x1008FF26
#define XF86XK_Forward 0x1008FF27
#define XF86XK_Stop 0x1008FF28
#define XF86XK_Refresh 0x1008FF29
#define XF86XK_PowerOff 0x1008FF2A
#define XF86XK_WakeUp 0x1008FF2B
#define XF86XK_Eject 0x1008FF2C
#define XF86XK_ScreenSaver 0x1008FF2D
#define XF86XK_WWW 0x1008FF2E
#define XF86XK_Sleep 0x1008FF2F
#define XF86XK_Favorites 0x1008FF30
#define XF86XK_AudioPause 0x1008FF31
#define XF86XK_AudioMedia 0x1008FF32
#define XF86XK_MyComputer 0x1008FF33
#define XF86XK_VendorHome 0x1008FF34
#define XF86XK_LightBulb 0x1008FF35
#define XF86XK_Shop 0x1008FF36
#define XF86XK_History 0x1008FF37
#define XF86XK_OpenURL 0x1008FF38
#define XF86XK_AddFavorite 0x1008FF39
#define XF86XK_HotLinks 0x1008FF3A
#define XF86XK_BrightnessAdjust 0x1008FF3B
#define XF86XK_Finance 0x1008FF3C
#define XF86XK_Community 0x1008FF3D
#define XF86XK_Launch0 0x1008FF40
#define XF86XK_Launch1 0x1008FF41
#define XF86XK_Launch2 0x1008FF42
#define XF86XK_Launch3 0x1008FF43
#define XF86XK_Launch4 0x1008FF44
#define XF86XK_Launch5 0x1008FF45
#define XF86XK_Launch6 0x1008FF46
#define XF86XK_Launch7 0x1008FF47
#define XF86XK_Launch8 0x1008FF48
#define XF86XK_Launch9 0x1008FF49
#define XF86XK_LaunchA 0x1008FF4A
#define XF86XK_LaunchB 0x1008FF4B
#define XF86XK_LaunchC 0x1008FF4C
#define XF86XK_LaunchD 0x1008FF4D
#define XF86XK_LaunchE 0x1008FF4E
#define XF86XK_LaunchF 0x1008FF4F
#endif
// map special KeyID keys to KeySyms
#if HAVE_X11_XF86KEYSYM_H
static const KeySym g_mapE000[] =
{
/* 0x00 */ 0, XF86XK_Eject, 0, 0, 0, 0, 0, 0,
/* 0x08 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x10 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x18 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x20 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x28 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x30 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x38 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x40 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x48 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x50 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x58 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x60 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x68 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x70 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x78 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x80 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x88 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x90 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x98 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xa0 */ 0, 0, 0, 0,
/* 0xa4 */ 0, 0,
/* 0xa6 */ XF86XK_Back, XF86XK_Forward,
/* 0xa8 */ XF86XK_Refresh, XF86XK_Stop,
/* 0xaa */ XF86XK_Search, XF86XK_Favorites,
/* 0xac */ XF86XK_HomePage, XF86XK_AudioMute,
/* 0xae */ XF86XK_AudioLowerVolume, XF86XK_AudioRaiseVolume,
/* 0xb0 */ XF86XK_AudioNext, XF86XK_AudioPrev,
/* 0xb2 */ XF86XK_AudioStop, XF86XK_AudioPlay,
/* 0xb4 */ XF86XK_Mail, XF86XK_AudioMedia,
/* 0xb6 */ XF86XK_Launch0, XF86XK_Launch1,
/* 0xb8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf8 */ 0, 0, 0, 0, 0, 0, 0, 0
};
#endif
CXWindowsKeyState::CXWindowsKeyState(Display* display) :
m_display(display)
{
// do nothing
}
CXWindowsKeyState::~CXWindowsKeyState()
{
// do nothing
}
KeyModifierMask
CXWindowsKeyState::mapModifiersFromX(unsigned int state) const
{
KeyModifierMask mask = 0;
if (state & ShiftMask)
mask |= KeyModifierShift;
if (state & LockMask)
mask |= KeyModifierCapsLock;
if (state & ControlMask)
mask |= KeyModifierControl;
if (state & m_altMask)
mask |= KeyModifierAlt;
if (state & m_metaMask)
mask |= KeyModifierMeta;
if (state & m_superMask)
mask |= KeyModifierSuper;
if (state & m_modeSwitchMask)
mask |= KeyModifierModeSwitch;
if (state & m_numLockMask)
mask |= KeyModifierNumLock;
if (state & m_scrollLockMask)
mask |= KeyModifierScrollLock;
return mask;
}
bool
CXWindowsKeyState::fakeCtrlAltDel()
{
// pass keys through unchanged
return false;
}
const char*
CXWindowsKeyState::getKeyName(KeyButton keycode) const
{
KeySym keysym = XKeycodeToKeysym(m_display, keycode, 0);
char* name = XKeysymToString(keysym);
if (name != NULL) {
return name;
}
else {
static char buffer[20];
return strcpy(buffer,
CStringUtil::print("keycode %d", keycode).c_str());
}
}
void
CXWindowsKeyState::doUpdateKeys()
{
// query which keys are pressed
char keys[32];
XQueryKeymap(m_display, keys);
// save the auto-repeat mask
XGetKeyboardControl(m_display, &m_keyControl);
// query the pointer to get the keyboard state
Window root = DefaultRootWindow(m_display), window;
int xRoot, yRoot, xWindow, yWindow;
unsigned int state;
if (!XQueryPointer(m_display, root, &root, &window,
&xRoot, &yRoot, &xWindow, &yWindow, &state)) {
state = 0;
}
// update mappings
updateKeysymMap();
updateModifiers();
// transfer to our state
for (UInt32 i = 0, j = 0; i < 32; j += 8, ++i) {
if ((keys[i] & 0x01) != 0)
setKeyDown(j + 0, true);
if ((keys[i] & 0x02) != 0)
setKeyDown(j + 1, true);
if ((keys[i] & 0x04) != 0)
setKeyDown(j + 2, true);
if ((keys[i] & 0x08) != 0)
setKeyDown(j + 3, true);
if ((keys[i] & 0x10) != 0)
setKeyDown(j + 4, true);
if ((keys[i] & 0x20) != 0)
setKeyDown(j + 5, true);
if ((keys[i] & 0x40) != 0)
setKeyDown(j + 6, true);
if ((keys[i] & 0x80) != 0)
setKeyDown(j + 7, true);
}
// set toggle modifier states
if ((state & LockMask) != 0)
setToggled(KeyModifierCapsLock);
if ((state & m_numLockMask) != 0)
setToggled(KeyModifierNumLock);
if ((state & m_scrollLockMask) != 0)
setToggled(KeyModifierScrollLock);
}
void
CXWindowsKeyState::doFakeKeyEvent(KeyButton keycode, bool press, bool)
{
XTestFakeKeyEvent(m_display, keycode, press ? True : False, CurrentTime);
XFlush(m_display);
}
KeyButton
CXWindowsKeyState::mapKey(Keystrokes& keys, KeyID id,
KeyModifierMask desiredMask, bool isAutoRepeat) const
{
// the system translates key events into characters depending
// on the modifier key state at the time of the event. to
// generate the right keysym we need to set the modifier key
// states appropriately.
//
// desiredMask is the mask desired by the caller. however, there
// may not be a keycode mapping to generate the desired keysym
// with that mask. we override the bits in the mask that cannot
// be accomodated.
// convert KeyID to a KeySym
KeySym keysym = keyIDToKeySym(id, desiredMask);
if (keysym == NoSymbol) {
// unknown key
return 0;
}
// get the mapping for this keysym
KeySymIndex keyIndex = m_keysymMap.find(keysym);
if (keyIndex != m_keysymMap.end()) {
// the keysym is mapped to some keycode. create the keystrokes
// for this keysym.
return mapToKeystrokes(keys, keyIndex, isAutoRepeat);
}
// we can't find the keysym mapped to any keycode. this doesn't
// necessarily mean we can't generate the keysym, though. if the
// keysym can be created by combining keysyms then we may still
// be okay.
CXWindowsUtil::KeySyms decomposition;
if (CXWindowsUtil::decomposeKeySym(keysym, decomposition)) {
LOG((CLOG_DEBUG2 "decomposed keysym 0x%08x into %d keysyms", keysym, decomposition.size()));
// map each decomposed keysym to keystrokes. we want the mask
// and the keycode from the last keysym (which should be the
// only non-dead key). the dead keys are not sensitive to
// anything but shift and mode switch.
KeyButton keycode = 0;
for (CXWindowsUtil::KeySyms::const_iterator i = decomposition.begin();
i != decomposition.end(); ++i) {
// lookup the key
keysym = *i;
keyIndex = m_keysymMap.find(keysym);
if (keyIndex == m_keysymMap.end()) {
// missing a required keysym
LOG((CLOG_DEBUG2 "can't map keysym %d: 0x%04x", i - decomposition.begin(), keysym));
return 0;
}
// the keysym is mapped to some keycode
keycode = mapToKeystrokes(keys, keyIndex, isAutoRepeat);
if (keycode == 0) {
return 0;
}
}
return keycode;
}
// if the mapping isn't found and keysym is caps lock sensitive
// then convert the case of the keysym and try again.
if (keyIndex == m_keysymMap.end()) {
KeySym lKey, uKey;
XConvertCase(keysym, &lKey, &uKey);
if (lKey != uKey) {
if (lKey == keysym) {
keyIndex = m_keysymMap.find(uKey);
}
else {
keyIndex = m_keysymMap.find(lKey);
}
}
if (keyIndex != m_keysymMap.end()) {
// the keysym is mapped to some keycode. create the keystrokes
// for this keysym.
return mapToKeystrokes(keys, keyIndex, isAutoRepeat);
}
}
return 0;
}
void
CXWindowsKeyState::updateKeysymMap()
{
// there are up to 4 keysyms per keycode
static const unsigned int maxKeysyms = 4;
// get the number of keycodes
int minKeycode, maxKeycode;
XDisplayKeycodes(m_display, &minKeycode, &maxKeycode);
const int numKeycodes = maxKeycode - minKeycode + 1;
// get the keyboard mapping for all keys
int keysymsPerKeycode;
KeySym* keysyms = XGetKeyboardMapping(m_display,
minKeycode, numKeycodes,
&keysymsPerKeycode);
// we only understand up to maxKeysyms keysyms per keycodes
unsigned int numKeysyms = keysymsPerKeycode;
if (numKeysyms > maxKeysyms) {
numKeysyms = maxKeysyms;
}
// determine shift and mode switch sensitivity. a keysym is shift
// or mode switch sensitive if its keycode is. a keycode is mode
// mode switch sensitive if it has keysyms for indices 2 or 3.
// it's shift sensitive if the keysym for index 1 (if any) is
// different from the keysym for index 0 and, if the keysym for
// for index 3 (if any) is different from the keysym for index 2.
// that is, if shift changes the generated keysym for the keycode.
std::vector<bool> usesShift(numKeycodes);
std::vector<bool> usesModeSwitch(numKeycodes);
for (int i = 0; i < numKeycodes; ++i) {
// check mode switch first
if (numKeysyms > 2 &&
keysyms[i * keysymsPerKeycode + 2] != NoSymbol ||
keysyms[i * keysymsPerKeycode + 3] != NoSymbol) {
usesModeSwitch[i] = true;
}
// check index 0 with index 1 keysyms
if (keysyms[i * keysymsPerKeycode + 0] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 1] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 1] !=
keysyms[i * keysymsPerKeycode + 0]) {
usesShift[i] = true;
}
else if (numKeysyms >= 4 &&
keysyms[i * keysymsPerKeycode + 2] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 3] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 3] !=
keysyms[i * keysymsPerKeycode + 2]) {
usesShift[i] = true;
}
}
// get modifier map from server
XModifierKeymap* modifiers = XGetModifierMapping(m_display);
unsigned int keysPerModifier = modifiers->max_keypermod;
// clear state
m_keysymMap.clear();
m_modeSwitchKeysym = NoSymbol;
m_altMask = 0;
m_metaMask = 0;
m_superMask = 0;
m_modeSwitchMask = 0;
m_numLockMask = 0;
m_scrollLockMask = 0;
// work around for my system, which reports this state bit when
// mode switch is down, instead of the appropriate modifier bit.
// should have no effect on other systems. -crs 9/02.
m_modeSwitchMask |= (1 << 13);
// for each modifier keycode, get the index 0 keycode and add it to
// the keysym map. also collect all keycodes for each modifier.
for (unsigned int i = 0; i < 8; ++i) {
// no keycodes for this modifier yet
KeyModifierMask mask = 0;
KeyButtons modifierKeys;
// add each keycode for modifier
for (unsigned int j = 0; j < keysPerModifier; ++j) {
// get keycode and ignore unset keycodes
KeyCode keycode = modifiers->modifiermap[i * keysPerModifier + j];
if (keycode == 0) {
continue;
}
// get keysym and get/create key mapping
const int keycodeIndex = keycode - minKeycode;
const KeySym keysym = keysyms[keycodeIndex *
keysymsPerKeycode + 0];
// get modifier mask if we haven't yet. this has the side
// effect of setting the m_*Mask members.
if (mask == 0) {
mask = mapToModifierMask(i, keysym);
if (mask == 0) {
continue;
}
}
// save keycode for modifier
modifierKeys.push_back(keycode);
// skip if we already have a keycode for this index
KeyMapping& mapping = m_keysymMap[keysym];
if (mapping.m_keycode[0] != 0) {
continue;
}
// fill in keysym info
mapping.m_keycode[0] = keycode;
mapping.m_shiftSensitive[0] = usesShift[keycodeIndex];
mapping.m_modeSwitchSensitive[0] = usesModeSwitch[keycodeIndex];
mapping.m_modifierMask = mask;
mapping.m_capsLockSensitive = false;
mapping.m_numLockSensitive = false;
}
// note this modifier
if (mask != 0) {
addModifier(mask, modifierKeys);
}
}
// create a convenient NoSymbol entry (if it doesn't exist yet).
// sometimes it's useful to handle NoSymbol like a normal keysym.
// remove any entry for NoSymbol. that keysym doesn't count.
{
KeyMapping& mapping = m_keysymMap[NoSymbol];
for (unsigned int i = 0; i < numKeysyms; ++i) {
mapping.m_keycode[i] = 0;
mapping.m_shiftSensitive[i] = false;
mapping.m_modeSwitchSensitive[i] = false;
}
mapping.m_modifierMask = 0;
mapping.m_capsLockSensitive = false;
mapping.m_numLockSensitive = false;
}
// add each keysym to the map, unless we've already inserted a key
// for that keysym index.
for (int i = 0; i < numKeycodes; ++i) {
for (unsigned int j = 0; j < numKeysyms; ++j) {
// lookup keysym
const KeySym keysym = keysyms[i * keysymsPerKeycode + j];
if (keysym == NoSymbol) {
continue;
}
KeyMapping& mapping = m_keysymMap[keysym];
// skip if we already have a keycode for this index
if (mapping.m_keycode[j] != 0) {
continue;
}
// fill in keysym info
if (mapping.m_keycode[0] == 0) {
mapping.m_modifierMask = 0;
}
mapping.m_keycode[j] = static_cast<KeyCode>(
minKeycode + i);
mapping.m_shiftSensitive[j] = usesShift[i];
mapping.m_modeSwitchSensitive[j] = usesModeSwitch[i];
mapping.m_numLockSensitive = isNumLockSensitive(keysym);
mapping.m_capsLockSensitive = isCapsLockSensitive(keysym);
}
}
// clean up
XFreeModifiermap(modifiers);
XFree(keysyms);
}
KeyModifierMask
CXWindowsKeyState::mapToModifierMask(unsigned int i, KeySym keysym)
{
// some modifier indices (0,1,2) are dedicated to particular uses,
// the rest depend on the keysyms bound.
switch (i) {
case 0:
return KeyModifierShift;
case 1:
return KeyModifierCapsLock;
case 2:
return KeyModifierControl;
default:
switch (keysym) {
case XK_Shift_L:
case XK_Shift_R:
return KeyModifierShift;
case XK_Control_L:
case XK_Control_R:
return KeyModifierControl;
case XK_Alt_L:
case XK_Alt_R:
m_altMask = (1 << i);
return KeyModifierAlt;
case XK_Meta_L:
case XK_Meta_R:
m_metaMask = (1 << i);
return KeyModifierMeta;
case XK_Super_L:
case XK_Super_R:
m_superMask = (1 << i);
return KeyModifierSuper;
case XK_Mode_switch:
case XK_ISO_Level3_Shift:
m_modeSwitchMask = (1 << i);
return KeyModifierModeSwitch;
case XK_Caps_Lock:
return KeyModifierCapsLock;
case XK_Num_Lock:
m_numLockMask = (1 << i);
return KeyModifierNumLock;
case XK_Scroll_Lock:
m_scrollLockMask = (1 << i);
return KeyModifierScrollLock;
default:
return 0;
}
}
}
void
CXWindowsKeyState::updateModifiers()
{
struct CModifierBitInfo {
public:
KeySym CXWindowsKeyState::*m_keysym;
KeySym m_left;
KeySym m_right;
};
static const CModifierBitInfo s_modifierBitTable[] = {
{ &CXWindowsKeyState::m_modeSwitchKeysym, XK_Mode_switch, NoSymbol },
{ &CXWindowsKeyState::m_modeSwitchKeysym, XK_ISO_Level3_Shift, NoSymbol },
};
// choose the keysym to use for some modifiers. if a modifier has
// both left and right versions then (arbitrarily) prefer the left.
for (size_t i = 0; i < sizeof(s_modifierBitTable) /
sizeof(s_modifierBitTable[0]); ++i) {
const CModifierBitInfo& info = s_modifierBitTable[i];
// find available keysym
KeySymIndex keyIndex = m_keysymMap.find(info.m_left);
if (keyIndex == m_keysymMap.end() && info.m_right != NoSymbol) {
keyIndex = m_keysymMap.find(info.m_right);
}
// save modifier info
if (keyIndex != m_keysymMap.end() &&
keyIndex->second.m_modifierMask != 0) {
this->*(info.m_keysym) = keyIndex->first;
}
}
// if there's no mode switch key mapped then remove all keycodes
// that depend on it and no keycode can be mode switch sensitive.
if (m_modeSwitchKeysym == NoSymbol) {
LOG((CLOG_DEBUG2 "no mode switch in keymap"));
for (KeySymMap::iterator i = m_keysymMap.begin();
i != m_keysymMap.end(); ) {
i->second.m_keycode[2] = 0;
i->second.m_keycode[3] = 0;
i->second.m_modeSwitchSensitive[0] = false;
i->second.m_modeSwitchSensitive[1] = false;
i->second.m_modeSwitchSensitive[2] = false;
i->second.m_modeSwitchSensitive[3] = false;
// if this keysym no has no keycodes then remove it
// except for the NoSymbol keysym mapping.
if (i->second.m_keycode[0] == 0 && i->second.m_keycode[1] == 0) {
m_keysymMap.erase(i++);
}
else {
++i;
}
}
}
}
KeySym
CXWindowsKeyState::keyIDToKeySym(KeyID id, KeyModifierMask mask) const
{
// convert id to keysym
KeySym keysym = NoSymbol;
if ((id & 0xfffff000) == 0xe000) {
// special character
switch (id & 0x0000ff00) {
#if HAVE_X11_XF86KEYSYM_H
case 0xe000:
return g_mapE000[id & 0xff];
#endif
case 0xee00:
// ISO 9995 Function and Modifier Keys
if (id == kKeyLeftTab) {
keysym = XK_ISO_Left_Tab;
}
break;
case 0xef00:
// MISCELLANY
keysym = static_cast<KeySym>(id - 0xef00 + 0xff00);
break;
}
}
else if ((id >= 0x0020 && id <= 0x007e) ||
(id >= 0x00a0 && id <= 0x00ff)) {
// Latin-1 maps directly
return static_cast<KeySym>(id);
}
else {
// lookup keysym in table
return CXWindowsUtil::mapUCS4ToKeySym(id);
}
// fail if unknown key
if (keysym == NoSymbol) {
return keysym;
}
// if kKeyTab is requested with shift active then try XK_ISO_Left_Tab
// instead. if that doesn't work, we'll fall back to XK_Tab with
// shift active. this is to handle primary screens that don't map
// XK_ISO_Left_Tab sending events to secondary screens that do.
if (keysym == XK_Tab && (mask & KeyModifierShift) != 0) {
keysym = XK_ISO_Left_Tab;
}
// some keysyms have emergency backups (particularly the numpad
// keys since most laptops don't have a separate numpad and the
// numpad overlaying the main keyboard may not have movement
// key bindings). figure out the emergency backup.
KeySym backupKeysym;
switch (keysym) {
case XK_KP_Home:
backupKeysym = XK_Home;
break;
case XK_KP_Left:
backupKeysym = XK_Left;
break;
case XK_KP_Up:
backupKeysym = XK_Up;
break;
case XK_KP_Right:
backupKeysym = XK_Right;
break;
case XK_KP_Down:
backupKeysym = XK_Down;
break;
case XK_KP_Prior:
backupKeysym = XK_Prior;
break;
case XK_KP_Next:
backupKeysym = XK_Next;
break;
case XK_KP_End:
backupKeysym = XK_End;
break;
case XK_KP_Insert:
backupKeysym = XK_Insert;
break;
case XK_KP_Delete:
backupKeysym = XK_Delete;
break;
case XK_ISO_Left_Tab:
backupKeysym = XK_Tab;
break;
default:
backupKeysym = keysym;
break;
}
// see if the keysym is assigned to any keycode. if not and the
// backup keysym is then use the backup keysym.
if (backupKeysym != keysym &&
m_keysymMap.find(keysym) == m_keysymMap.end() &&
m_keysymMap.find(backupKeysym) != m_keysymMap.end()) {
keysym = backupKeysym;
}
return keysym;
}
KeyButton
CXWindowsKeyState::mapToKeystrokes(Keystrokes& keys,
KeySymIndex keyIndex, bool isAutoRepeat) const
{
// keyIndex must be valid
assert(keyIndex != m_keysymMap.end());
KeyModifierMask currentMask = getActiveModifiers();
// get the keysym we're trying to generate and possible keycodes
const KeySym keysym = keyIndex->first;
const KeyMapping& mapping = keyIndex->second;
LOG((CLOG_DEBUG2 "keysym = 0x%08x", keysym));
// get the best keycode index for the keysym and modifiers. note
// that (bestIndex & 1) == 0 if the keycode is a shift modifier
// and (bestIndex & 2) == 0 if the keycode is a mode switch
// modifier. this is important later because we don't want
// adjustModifiers() to adjust a modifier if that's the key we're
// mapping.
unsigned int bestIndex = findBestKeyIndex(keyIndex, currentMask);
// get the keycode
KeyButton keycode = mapping.m_keycode[bestIndex];
// flip low bit of bestIndex if shift is inverted. if there's a
// keycode for this new index then use it. otherwise use the old
// keycode. you'd think we should fail if there isn't a keycode
// for the new index but some keymaps only include the upper case
// keysyms (notably those on Sun Solaris) so to handle the missing
// lower case keysyms we just use the old keycode. note that
// isShiftInverted() will always return false for a shift modifier.
if (isShiftInverted(keyIndex, currentMask)) {
LOG((CLOG_DEBUG2 "shift is inverted"));
bestIndex ^= 1;
if (mapping.m_keycode[bestIndex] != 0) {
keycode = mapping.m_keycode[bestIndex];
}
}
LOG((CLOG_DEBUG2 "bestIndex = %d, keycode = %d", bestIndex, keycode));
// if this for auto-repeat and this key does not auto-repeat
// then return 0.
if (isAutoRepeat &&
(m_keyControl.auto_repeats[keycode >> 3] &
static_cast<char>(1 << (keycode & 7))) == 0) {
LOG((CLOG_DEBUG2 "non-autorepeating"));
return 0;
}
// compute desired mask. the desired mask is the one that matches
// bestIndex, except if the key being synthesized is a shift key
// where we desire what we already have or if it's the mode switch
// key where we only desire to adjust shift. also, if the keycode
// is not sensitive to shift then don't adjust it, otherwise
// something like shift+home would become just home. similiarly
// for mode switch.
KeyModifierMask desiredMask = currentMask;
if (keyIndex->second.m_modifierMask != KeyModifierShift) {
if (keyIndex->second.m_shiftSensitive[bestIndex]) {
if ((bestIndex & 1) != 0) {
desiredMask |= KeyModifierShift;
}
else {
desiredMask &= ~KeyModifierShift;
}
}
if (keyIndex->second.m_modifierMask != KeyModifierModeSwitch) {
if (keyIndex->second.m_modeSwitchSensitive[bestIndex]) {
if ((bestIndex & 2) != 0) {
desiredMask |= KeyModifierModeSwitch;
}
else {
desiredMask &= ~KeyModifierModeSwitch;
}
}
}
}
// adjust the modifiers to match the desired modifiers
Keystrokes undo;
if (!adjustModifiers(keys, undo, desiredMask)) {
LOG((CLOG_DEBUG2 "failed to adjust modifiers"));
return 0;
}
// add the key event
Keystroke keystroke;
keystroke.m_key = keycode;
if (!isAutoRepeat) {
keystroke.m_press = true;
keystroke.m_repeat = false;
keys.push_back(keystroke);
}
else {
keystroke.m_press = false;
keystroke.m_repeat = true;
keys.push_back(keystroke);
keystroke.m_press = true;
keys.push_back(keystroke);
}
// put undo keystrokes at end of keystrokes in reverse order
while (!undo.empty()) {
keys.push_back(undo.back());
undo.pop_back();
}
return keycode;
}
unsigned int
CXWindowsKeyState::findBestKeyIndex(KeySymIndex keyIndex,
KeyModifierMask /*currentMask*/) const
{
// there are up to 4 keycodes per keysym to choose from. the
// best choice is the one that requires the fewest adjustments
// to the modifier state. for example, the letter A normally
// requires shift + a. if shift isn't already down we'd have
// to synthesize a shift press before the a press. however,
// if A could also be created with some other keycode without
// shift then we'd prefer that when shift wasn't down.
//
// if the action is an auto-repeat then we don't call this
// method since we just need to synthesize a key repeat on the
// same keycode that we pressed.
// FIXME -- do this right
for (unsigned int i = 0; i < 4; ++i) {
if (keyIndex->second.m_keycode[i] != 0) {
return i;
}
}
assert(0 && "no keycode found for keysym");
return 0;
}
bool
CXWindowsKeyState::isShiftInverted(KeySymIndex keyIndex,
KeyModifierMask currentMask) const
{
// each keycode has up to 4 keysym associated with it, one each for:
// no modifiers, shift, mode switch, and shift and mode switch. if
// a keysym is modified by num lock and num lock is active then you
// get the shifted keysym when shift is not down and the unshifted
// keysym when it is. that is, num lock inverts the sense of the
// shift modifier when active. similarly for caps lock. this
// method returns true iff the sense of shift should be inverted
// for this key given a modifier state.
if (keyIndex->second.m_numLockSensitive) {
if ((currentMask & KeyModifierNumLock) != 0) {
return true;
}
}
// if a keysym is num lock sensitive it is never caps lock
// sensitive, thus the else here.
else if (keyIndex->second.m_capsLockSensitive) {
if ((currentMask & KeyModifierCapsLock) != 0) {
return true;
}
}
return false;
}
bool
CXWindowsKeyState::adjustModifiers(Keystrokes& keys,
Keystrokes& undo,
KeyModifierMask desiredMask) const
{
KeyModifierMask currentMask = getActiveModifiers();
// get mode switch set correctly. do this before shift because
// mode switch may be sensitive to the shift modifier and will
// set/reset it as necessary.
bool forceShift = false;
bool wantShift = ((desiredMask & KeyModifierShift) != 0);
bool wantModeSwitch = ((desiredMask & KeyModifierModeSwitch) != 0);
bool haveModeSwitch = ((currentMask & KeyModifierModeSwitch) != 0);
if (wantModeSwitch != haveModeSwitch) {
LOG((CLOG_DEBUG2 "fix mode switch"));
// adjust shift if necessary (i.e. turn it off it's on and mode
// shift is sensitive to the shift key)
KeySymIndex modeSwitchIndex = m_keysymMap.find(m_modeSwitchKeysym);
assert(modeSwitchIndex != m_keysymMap.end());
if (modeSwitchIndex->second.m_shiftSensitive[0]) {
bool haveShift = ((currentMask & KeyModifierShift) != 0);
if (haveShift) {
// add shift keystrokes
LOG((CLOG_DEBUG2 "fix shift for mode switch"));
if (!mapModifier(keys, undo, KeyModifierShift, false, true)) {
return false;
}
// our local concept of shift has flipped
currentMask ^= KeyModifierShift;
// force shift to get turned on below if we had to turn
// off here and shift is desired. if we didn't force it
// then mapModifier would think shift is already down
// and ignore the request.
forceShift = wantShift;
}
}
// add mode switch keystrokes
if (!mapModifier(keys, undo, KeyModifierModeSwitch, wantModeSwitch)) {
return false;
}
currentMask ^= KeyModifierModeSwitch;
}
// get shift set correctly
bool haveShift = ((currentMask & KeyModifierShift) != 0);
if (wantShift != haveShift) {
// add shift keystrokes
LOG((CLOG_DEBUG2 "fix shift"));
if (!mapModifier(keys, undo, KeyModifierShift, wantShift, forceShift)) {
return false;
}
currentMask ^= KeyModifierShift;
}
return true;
}
bool
CXWindowsKeyState::isNumLockSensitive(KeySym keysym) const
{
return (IsKeypadKey(keysym) || IsPrivateKeypadKey(keysym));
}
bool
CXWindowsKeyState::isCapsLockSensitive(KeySym keysym) const
{
KeySym lKey, uKey;
XConvertCase(keysym, &lKey, &uKey);
return (lKey != uKey);
}
//
// CXWindowsKeyState::KeyMapping
//
CXWindowsKeyState::KeyMapping::KeyMapping()
{
m_keycode[0] = 0;
m_keycode[1] = 0;
m_keycode[2] = 0;
m_keycode[3] = 0;
}