/* * synergy -- mouse and keyboard sharing utility * Copyright (C) 2003 Chris Schoeneman * * This package is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * found in the file COPYING that should have accompanied this file. * * This package is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "CXWindowsKeyMapper.h" #include "CXWindowsUtil.h" #include "CLog.h" #if defined(X_DISPLAY_MISSING) # error X11 is required to build synergy #else # include # include # define XK_MISCELLANY # define XK_XKB_KEYS # include # if defined(HAVE_X11_XF86KEYSYM_H) # include # endif # if !defined(XF86XK_Launch0) # define XF86XK_Launch0 0x1008FF40 # endif # if !defined(XF86XK_Launch1) # define XF86XK_Launch1 0x1008FF41 # endif #endif // map special KeyID keys to KeySyms #if defined(HAVE_X11_XF86KEYSYM_H) static const KeySym g_mapE000[] = { /* 0x00 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x28 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x30 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x38 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x40 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x48 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x50 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x58 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x68 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x78 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x80 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x88 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x90 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x98 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xa0 */ 0, 0, 0, 0, /* 0xa4 */ 0, 0, /* 0xa6 */ XF86XK_Back, XF86XK_Forward, /* 0xa8 */ XF86XK_Refresh, XF86XK_Stop, /* 0xaa */ XF86XK_Search, XF86XK_Favorites, /* 0xac */ XF86XK_HomePage, XF86XK_AudioMute, /* 0xae */ XF86XK_AudioLowerVolume, XF86XK_AudioRaiseVolume, /* 0xb0 */ XF86XK_AudioNext, XF86XK_AudioPrev, /* 0xb2 */ XF86XK_AudioStop, XF86XK_AudioPlay, /* 0xb4 */ XF86XK_Mail, XF86XK_AudioMedia, /* 0xb6 */ XF86XK_Launch0, XF86XK_Launch1, /* 0xb8 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xc0 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xc8 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xd0 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xd8 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xe0 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xe8 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xf0 */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xf8 */ 0, 0, 0, 0, 0, 0, 0, 0 }; #endif CXWindowsKeyMapper::CXWindowsKeyMapper() { // do nothing } CXWindowsKeyMapper::~CXWindowsKeyMapper() { // do nothing } void CXWindowsKeyMapper::update(Display* display, IKeyState* keyState) { // query which keys are pressed char keys[32]; XQueryKeymap(display, keys); // save the auto-repeat mask XGetKeyboardControl(display, &m_keyControl); // query the pointer to get the keyboard state Window root = DefaultRootWindow(display), window; int xRoot, yRoot, xWindow, yWindow; unsigned int state; if (!XQueryPointer(display, root, &root, &window, &xRoot, &yRoot, &xWindow, &yWindow, &state)) { state = 0; } // update mappings updateKeysymMap(display, keyState); updateModifiers(); // transfer to our state for (UInt32 i = 0, j = 0; i < 32; j += 8, ++i) { if ((keys[i] & 0x01) != 0) keyState->setKeyDown(j + 0); if ((keys[i] & 0x02) != 0) keyState->setKeyDown(j + 1); if ((keys[i] & 0x04) != 0) keyState->setKeyDown(j + 2); if ((keys[i] & 0x08) != 0) keyState->setKeyDown(j + 3); if ((keys[i] & 0x10) != 0) keyState->setKeyDown(j + 4); if ((keys[i] & 0x20) != 0) keyState->setKeyDown(j + 5); if ((keys[i] & 0x40) != 0) keyState->setKeyDown(j + 6); if ((keys[i] & 0x80) != 0) keyState->setKeyDown(j + 7); } // set toggle modifier states if ((state & LockMask) != 0) keyState->setToggled(KeyModifierCapsLock); if ((state & m_numLockMask) != 0) keyState->setToggled(KeyModifierNumLock); if ((state & m_scrollLockMask) != 0) keyState->setToggled(KeyModifierScrollLock); } KeyButton CXWindowsKeyMapper::mapKey(IKeyState::Keystrokes& keys, const IKeyState& keyState, KeyID id, KeyModifierMask desiredMask, bool isAutoRepeat) const { // the system translates key events into characters depending // on the modifier key state at the time of the event. to // generate the right keysym we need to set the modifier key // states appropriately. // // desiredMask is the mask desired by the caller. however, there // may not be a keycode mapping to generate the desired keysym // with that mask. we override the bits in the mask that cannot // be accomodated. // convert KeyID to a KeySym KeySym keysym = keyIDToKeySym(id, desiredMask); if (keysym == NoSymbol) { // unknown key return 0; } // get the mapping for this keysym KeySymIndex keyIndex = m_keysymMap.find(keysym); // if the mapping isn't found and keysym is caps lock sensitive // then convert the case of the keysym and try again. if (keyIndex == m_keysymMap.end()) { KeySym lKey, uKey; XConvertCase(keysym, &lKey, &uKey); if (lKey != uKey) { if (lKey == keysym) { keyIndex = m_keysymMap.find(uKey); } else { keyIndex = m_keysymMap.find(lKey); } } } if (keyIndex != m_keysymMap.end()) { // the keysym is mapped to some keycode. create the keystrokes // for this keysym. return mapToKeystrokes(keys, keyState, keyIndex, isAutoRepeat); } // we can't find the keysym mapped to any keycode. this doesn't // necessarily mean we can't generate the keysym, though. if the // keysym can be created by combining keysyms then we may still // be okay. CXWindowsUtil::KeySyms decomposition; if (!CXWindowsUtil::decomposeKeySym(keysym, decomposition)) { return 0; } LOG((CLOG_DEBUG2 "decomposed keysym 0x%08x into %d keysyms", keysym, decomposition.size())); // map each decomposed keysym to keystrokes. we want the mask // and the keycode from the last keysym (which should be the // only non-dead key). the dead keys are not sensitive to // anything but shift and mode switch. KeyButton keycode = 0; for (CXWindowsUtil::KeySyms::const_iterator i = decomposition.begin(); i != decomposition.end(); ++i) { // lookup the key keysym = *i; keyIndex = m_keysymMap.find(keysym); if (keyIndex == m_keysymMap.end()) { // missing a required keysym return 0; } // the keysym is mapped to some keycode keycode = mapToKeystrokes(keys, keyState, keyIndex, isAutoRepeat); if (keycode == 0) { return 0; } } return keycode; } KeyModifierMask CXWindowsKeyMapper::mapModifier(unsigned int state) const { KeyModifierMask mask = 0; if (state & ShiftMask) mask |= KeyModifierShift; if (state & LockMask) mask |= KeyModifierCapsLock; if (state & ControlMask) mask |= KeyModifierControl; if (state & m_altMask) mask |= KeyModifierAlt; if (state & m_metaMask) mask |= KeyModifierMeta; if (state & m_superMask) mask |= KeyModifierSuper; if (state & m_modeSwitchMask) mask |= KeyModifierModeSwitch; if (state & m_numLockMask) mask |= KeyModifierNumLock; if (state & m_scrollLockMask) mask |= KeyModifierScrollLock; return mask; } void CXWindowsKeyMapper::updateKeysymMap(Display* display, IKeyState* keyState) { // there are up to 4 keysyms per keycode static const unsigned int maxKeysyms = 4; // get the number of keycodes int minKeycode, maxKeycode; XDisplayKeycodes(display, &minKeycode, &maxKeycode); const int numKeycodes = maxKeycode - minKeycode + 1; // get the keyboard mapping for all keys int keysymsPerKeycode; KeySym* keysyms = XGetKeyboardMapping(display, minKeycode, numKeycodes, &keysymsPerKeycode); // we only understand up to maxKeysyms keysyms per keycodes unsigned int numKeysyms = keysymsPerKeycode; if (numKeysyms > maxKeysyms) { numKeysyms = maxKeysyms; } // determine shift and mode switch sensitivity. a keysym is shift // or mode switch sensitive if its keycode is. a keycode is mode // mode switch sensitive if it has keysyms for indices 2 or 3. // it's shift sensitive if the keysym for index 1 (if any) is // different from the keysym for index 0 and, if the keysym for // for index 3 (if any) is different from the keysym for index 2. // that is, if shift changes the generated keysym for the keycode. std::vector usesShift(numKeycodes); std::vector usesModeSwitch(numKeycodes); for (int i = 0; i < numKeycodes; ++i) { // check mode switch first if (numKeysyms > 2 && keysyms[i * keysymsPerKeycode + 2] != NoSymbol || keysyms[i * keysymsPerKeycode + 3] != NoSymbol) { usesModeSwitch[i] = true; } // check index 0 with index 1 keysyms if (keysyms[i * keysymsPerKeycode + 0] != NoSymbol && keysyms[i * keysymsPerKeycode + 1] != NoSymbol && keysyms[i * keysymsPerKeycode + 1] != keysyms[i * keysymsPerKeycode + 0]) { usesShift[i] = true; } else if (numKeysyms >= 4 && keysyms[i * keysymsPerKeycode + 2] != NoSymbol && keysyms[i * keysymsPerKeycode + 3] != NoSymbol && keysyms[i * keysymsPerKeycode + 3] != keysyms[i * keysymsPerKeycode + 2]) { usesShift[i] = true; } } // get modifier map from server XModifierKeymap* modifiers = XGetModifierMapping(display); int keysPerModifier = modifiers->max_keypermod; // clear state m_keysymMap.clear(); m_modeSwitchKeysym = NoSymbol; m_altMask = 0; m_metaMask = 0; m_superMask = 0; m_modeSwitchMask = 0; m_numLockMask = 0; m_scrollLockMask = 0; // work around for my system, which reports this state bit when // mode switch is down, instead of the appropriate modifier bit. // should have no effect on other systems. -crs 9/02. m_modeSwitchMask |= (1 << 13); // for each modifier keycode, get the index 0 keycode and add it to // the keysym map. also collect all keycodes for each modifier. for (unsigned int i = 0; i < 8; ++i) { // no keycodes for this modifier yet bool hasKeycode = false; KeyModifierMask mask = 0; IKeyState::KeyButtons modifierKeys; // add each keycode for modifier for (unsigned int j = 0; j < keysPerModifier; ++j) { // get keycode and ignore unset keycodes KeyCode keycode = modifiers->modifiermap[i * keysPerModifier + j]; if (keycode == 0) { continue; } // get keysym and get/create key mapping const int keycodeIndex = keycode - minKeycode; const KeySym keysym = keysyms[keycodeIndex * keysymsPerKeycode + 0]; // get modifier mask if we haven't yet. this has the side // effect of setting the m_*Mask members. if (mask == 0) { mask = mapToModifierMask(i, keysym); if (mask == 0) { continue; } } // save keycode for modifier modifierKeys.push_back(keycode); // skip if we already have a keycode for this index KeyMapping& mapping = m_keysymMap[keysym]; if (mapping.m_keycode[0] != 0) { continue; } // fill in keysym info mapping.m_keycode[0] = keycode; mapping.m_shiftSensitive[0] = usesShift[keycodeIndex]; mapping.m_modeSwitchSensitive[0] = usesModeSwitch[keycodeIndex]; mapping.m_modifierMask = mask; mapping.m_capsLockSensitive = false; mapping.m_numLockSensitive = false; } // tell keyState about this modifier if (mask != 0 && keyState != NULL) { keyState->addModifier(mask, modifierKeys); } } // create a convenient NoSymbol entry (if it doesn't exist yet). // sometimes it's useful to handle NoSymbol like a normal keysym. // remove any entry for NoSymbol. that keysym doesn't count. { KeyMapping& mapping = m_keysymMap[NoSymbol]; for (unsigned int i = 0; i < numKeysyms; ++i) { mapping.m_keycode[i] = 0; mapping.m_shiftSensitive[i] = false; mapping.m_modeSwitchSensitive[i] = false; } mapping.m_modifierMask = 0; mapping.m_capsLockSensitive = false; mapping.m_numLockSensitive = false; } // add each keysym to the map, unless we've already inserted a key // for that keysym index. for (int i = 0; i < numKeycodes; ++i) { for (unsigned int j = 0; j < numKeysyms; ++j) { // lookup keysym const KeySym keysym = keysyms[i * keysymsPerKeycode + j]; if (keysym == NoSymbol) { continue; } KeyMapping& mapping = m_keysymMap[keysym]; // skip if we already have a keycode for this index if (mapping.m_keycode[j] != 0) { continue; } // fill in keysym info if (mapping.m_keycode[0] == 0) { mapping.m_modifierMask = 0; } mapping.m_keycode[j] = static_cast( minKeycode + i); mapping.m_shiftSensitive[j] = usesShift[i]; mapping.m_modeSwitchSensitive[j] = usesModeSwitch[i]; mapping.m_numLockSensitive = isNumLockSensitive(keysym); mapping.m_capsLockSensitive = isCapsLockSensitive(keysym); } } // clean up XFreeModifiermap(modifiers); XFree(keysyms); } KeyModifierMask CXWindowsKeyMapper::mapToModifierMask(unsigned int i, KeySym keysym) { // some modifier indices (0,1,2) are dedicated to particular uses, // the rest depend on the keysyms bound. switch (i) { case 0: return KeyModifierShift; case 1: return KeyModifierCapsLock; case 2: return KeyModifierControl; default: switch (keysym) { case XK_Shift_L: case XK_Shift_R: return KeyModifierShift; case XK_Control_L: case XK_Control_R: return KeyModifierControl; case XK_Alt_L: case XK_Alt_R: m_altMask = (1 << i); return KeyModifierAlt; case XK_Meta_L: case XK_Meta_R: m_metaMask = (1 << i); return KeyModifierMeta; case XK_Super_L: case XK_Super_R: m_superMask = (1 << i); return KeyModifierSuper; case XK_Mode_switch: m_modeSwitchMask = (1 << i); return KeyModifierModeSwitch; case XK_Caps_Lock: return KeyModifierCapsLock; case XK_Num_Lock: m_numLockMask = (1 << i); return KeyModifierNumLock; case XK_Scroll_Lock: m_scrollLockMask = (1 << i); return KeyModifierScrollLock; default: return 0; } } } void CXWindowsKeyMapper::updateModifiers() { struct CModifierBitInfo { public: KeySym CXWindowsKeyMapper::*m_keysym; KeySym m_left; KeySym m_right; }; static const CModifierBitInfo s_modifierBitTable[] = { { &CXWindowsKeyMapper::m_modeSwitchKeysym, XK_Mode_switch, NoSymbol }, }; // choose the keysym to use for some modifiers. if a modifier has // both left and right versions then (arbitrarily) prefer the left. for (size_t i = 0; i < sizeof(s_modifierBitTable) / sizeof(s_modifierBitTable[0]); ++i) { const CModifierBitInfo& info = s_modifierBitTable[i]; // find available keysym KeySymIndex keyIndex = m_keysymMap.find(info.m_left); if (keyIndex == m_keysymMap.end() && info.m_right != NoSymbol) { keyIndex = m_keysymMap.find(info.m_right); } // save modifier info if (keyIndex != m_keysymMap.end() && keyIndex->second.m_modifierMask != 0) { this->*(info.m_keysym) = keyIndex->first; } } // if there's no mode switch key mapped then remove all keycodes // that depend on it and no keycode can be mode switch sensitive. if (m_modeSwitchKeysym == NoSymbol) { LOG((CLOG_DEBUG2 "no mode switch in keymap")); for (KeySymMap::iterator i = m_keysymMap.begin(); i != m_keysymMap.end(); ) { i->second.m_keycode[2] = 0; i->second.m_keycode[3] = 0; i->second.m_modeSwitchSensitive[0] = false; i->second.m_modeSwitchSensitive[1] = false; i->second.m_modeSwitchSensitive[2] = false; i->second.m_modeSwitchSensitive[3] = false; // if this keysym no has no keycodes then remove it // except for the NoSymbol keysym mapping. if (i->second.m_keycode[0] == 0 && i->second.m_keycode[1] == 0) { m_keysymMap.erase(i++); } else { ++i; } } } } KeySym CXWindowsKeyMapper::keyIDToKeySym(KeyID id, KeyModifierMask mask) const { // convert id to keysym KeySym keysym = NoSymbol; if ((id & 0xfffff000) == 0xe000) { // special character switch (id & 0x0000ff00) { #if defined(HAVE_X11_XF86KEYSYM_H) case 0xe000: return g_mapE000[id & 0xff]; #endif case 0xee00: // ISO 9995 Function and Modifier Keys if (id == kKeyLeftTab) { keysym = XK_ISO_Left_Tab; } break; case 0xef00: // MISCELLANY keysym = static_cast(id - 0xef00 + 0xff00); break; } } else if ((id >= 0x0020 && id <= 0x007e) || (id >= 0x00a0 && id <= 0x00ff)) { // Latin-1 maps directly return static_cast(id); } else { // lookup keysym in table return CXWindowsUtil::mapUCS4ToKeySym(id); } // fail if unknown key if (keysym == NoSymbol) { return keysym; } // if kKeyTab is requested with shift active then try XK_ISO_Left_Tab // instead. if that doesn't work, we'll fall back to XK_Tab with // shift active. this is to handle primary screens that don't map // XK_ISO_Left_Tab sending events to secondary screens that do. if (keysym == XK_Tab && (mask & KeyModifierShift) != 0) { keysym = XK_ISO_Left_Tab; } // some keysyms have emergency backups (particularly the numpad // keys since most laptops don't have a separate numpad and the // numpad overlaying the main keyboard may not have movement // key bindings). figure out the emergency backup. KeySym backupKeysym; switch (keysym) { case XK_KP_Home: backupKeysym = XK_Home; break; case XK_KP_Left: backupKeysym = XK_Left; break; case XK_KP_Up: backupKeysym = XK_Up; break; case XK_KP_Right: backupKeysym = XK_Right; break; case XK_KP_Down: backupKeysym = XK_Down; break; case XK_KP_Prior: backupKeysym = XK_Prior; break; case XK_KP_Next: backupKeysym = XK_Next; break; case XK_KP_End: backupKeysym = XK_End; break; case XK_KP_Insert: backupKeysym = XK_Insert; break; case XK_KP_Delete: backupKeysym = XK_Delete; break; case XK_ISO_Left_Tab: backupKeysym = XK_Tab; break; default: backupKeysym = keysym; break; } // see if the keysym is assigned to any keycode. if not and the // backup keysym is then use the backup keysym. if (backupKeysym != keysym && m_keysymMap.find(keysym) == m_keysymMap.end() && m_keysymMap.find(backupKeysym) != m_keysymMap.end()) { keysym = backupKeysym; } return keysym; } KeyButton CXWindowsKeyMapper::mapToKeystrokes(IKeyState::Keystrokes& keys, const IKeyState& keyState, KeySymIndex keyIndex, bool isAutoRepeat) const { // keyIndex must be valid assert(keyIndex != m_keysymMap.end()); KeyModifierMask currentMask = keyState.getActiveModifiers(); // get the keysym we're trying to generate and possible keycodes const KeySym keysym = keyIndex->first; const KeyMapping& mapping = keyIndex->second; LOG((CLOG_DEBUG2 "keysym = 0x%08x", keysym)); // get the best keycode index for the keysym and modifiers. note // that (bestIndex & 1) == 0 if the keycode is a shift modifier // and (bestIndex & 2) == 0 if the keycode is a mode switch // modifier. this is important later because we don't want // adjustModifiers() to adjust a modifier if that's the key we're // mapping. unsigned int bestIndex = findBestKeyIndex(keyIndex, currentMask); // get the keycode KeyButton keycode = mapping.m_keycode[bestIndex]; // flip low bit of bestIndex if shift is inverted. if there's a // keycode for this new index then use it. otherwise use the old // keycode. you'd think we should fail if there isn't a keycode // for the new index but some keymaps only include the upper case // keysyms (notably those on Sun Solaris) so to handle the missing // lower case keysyms we just use the old keycode. note that // isShiftInverted() will always return false for a shift modifier. if (isShiftInverted(keyIndex, currentMask)) { LOG((CLOG_DEBUG2 "shift is inverted")); bestIndex ^= 1; if (mapping.m_keycode[bestIndex] != 0) { keycode = mapping.m_keycode[bestIndex]; } } LOG((CLOG_DEBUG2 "bestIndex = %d, keycode = %d", bestIndex, keycode)); // if this for auto-repeat and this key does not auto-repeat // then return 0. if (isAutoRepeat && (m_keyControl.auto_repeats[keycode >> 3] & static_cast(1 << (keycode & 7))) == 0) { return 0; } // compute desired mask. the desired mask is the one that matches // bestIndex, except if the key being synthesized is a shift key // where we desire what we already have or if it's the mode switch // key where we only desire to adjust shift. also, if the keycode // is not sensitive to shift then don't adjust it, otherwise // something like shift+home would become just home. similiarly // for mode switch. KeyModifierMask desiredMask = currentMask; if (keyIndex->second.m_modifierMask != KeyModifierShift) { if (keyIndex->second.m_shiftSensitive[bestIndex]) { if ((bestIndex & 1) != 0) { desiredMask |= KeyModifierShift; } else { desiredMask &= ~KeyModifierShift; } } if (keyIndex->second.m_modifierMask != KeyModifierModeSwitch) { if (keyIndex->second.m_modeSwitchSensitive[bestIndex]) { if ((bestIndex & 2) != 0) { desiredMask |= KeyModifierModeSwitch; } else { desiredMask &= ~KeyModifierModeSwitch; } } } } // adjust the modifiers to match the desired modifiers IKeyState::Keystrokes undo; if (!adjustModifiers(keys, undo, keyState, desiredMask)) { LOG((CLOG_DEBUG2 "failed to adjust modifiers")); return 0; } // add the key event IKeyState::Keystroke keystroke; keystroke.m_key = keycode; if (!isAutoRepeat) { keystroke.m_press = true; keystroke.m_repeat = false; keys.push_back(keystroke); } else { keystroke.m_press = false; keystroke.m_repeat = true; keys.push_back(keystroke); keystroke.m_press = true; keys.push_back(keystroke); } // put undo keystrokes at end of keystrokes in reverse order while (!undo.empty()) { keys.push_back(undo.back()); undo.pop_back(); } return keycode; } unsigned int CXWindowsKeyMapper::findBestKeyIndex(KeySymIndex keyIndex, KeyModifierMask /*currentMask*/) const { // there are up to 4 keycodes per keysym to choose from. the // best choice is the one that requires the fewest adjustments // to the modifier state. for example, the letter A normally // requires shift + a. if shift isn't already down we'd have // to synthesize a shift press before the a press. however, // if A could also be created with some other keycode without // shift then we'd prefer that when shift wasn't down. // // if the action is an auto-repeat then we don't call this // method since we just need to synthesize a key repeat on the // same keycode that we pressed. // XXX -- do this right for (unsigned int i = 0; i < 4; ++i) { if (keyIndex->second.m_keycode[i] != 0) { return i; } } assert(0 && "no keycode found for keysym"); return 0; } bool CXWindowsKeyMapper::isShiftInverted(KeySymIndex keyIndex, KeyModifierMask currentMask) const { // each keycode has up to 4 keysym associated with it, one each for: // no modifiers, shift, mode switch, and shift and mode switch. if // a keysym is modified by num lock and num lock is active then you // get the shifted keysym when shift is not down and the unshifted // keysym when it is. that is, num lock inverts the sense of the // shift modifier when active. similarly for caps lock. this // method returns true iff the sense of shift should be inverted // for this key given a modifier state. if (keyIndex->second.m_numLockSensitive) { if ((currentMask & KeyModifierNumLock) != 0) { return true; } } // if a keysym is num lock sensitive it is never caps lock // sensitive, thus the else here. else if (keyIndex->second.m_capsLockSensitive) { if ((currentMask & KeyModifierCapsLock) != 0) { return true; } } return false; } bool CXWindowsKeyMapper::adjustModifiers(IKeyState::Keystrokes& keys, IKeyState::Keystrokes& undo, const IKeyState& keyState, KeyModifierMask desiredMask) const { KeyModifierMask currentMask = keyState.getActiveModifiers(); // get mode switch set correctly. do this before shift because // mode switch may be sensitive to the shift modifier and will // set/reset it as necessary. const bool wantModeSwitch = ((desiredMask & KeyModifierModeSwitch) != 0); const bool haveModeSwitch = ((currentMask & KeyModifierModeSwitch) != 0); if (wantModeSwitch != haveModeSwitch) { LOG((CLOG_DEBUG2 "fix mode switch")); // adjust shift if necessary KeySymIndex modeSwitchIndex = m_keysymMap.find(m_modeSwitchKeysym); assert(modeSwitchIndex != m_keysymMap.end()); if (modeSwitchIndex->second.m_shiftSensitive[0]) { const bool wantShift = false; const bool haveShift = ((currentMask & KeyModifierShift) != 0); if (wantShift != haveShift) { // add shift keystrokes LOG((CLOG_DEBUG2 "fix shift for mode switch")); if (!keyState.mapModifier(keys, undo, KeyModifierShift, wantShift)) { return false; } currentMask ^= KeyModifierShift; } } // add mode switch keystrokes if (!keyState.mapModifier(keys, undo, KeyModifierModeSwitch, wantModeSwitch)) { return false; } currentMask ^= KeyModifierModeSwitch; } // get shift set correctly const bool wantShift = ((desiredMask & KeyModifierShift) != 0); const bool haveShift = ((currentMask & KeyModifierShift) != 0); if (wantShift != haveShift) { // add shift keystrokes LOG((CLOG_DEBUG2 "fix shift")); if (!keyState.mapModifier(keys, undo, KeyModifierShift, wantShift)) { return false; } currentMask ^= KeyModifierShift; } return true; } bool CXWindowsKeyMapper::isNumLockSensitive(KeySym keysym) const { return (IsKeypadKey(keysym) || IsPrivateKeypadKey(keysym)); } bool CXWindowsKeyMapper::isCapsLockSensitive(KeySym keysym) const { KeySym lKey, uKey; XConvertCase(keysym, &lKey, &uKey); return (lKey != uKey); } // // CXWindowsKeyMapper::KeyMapping // CXWindowsKeyMapper::KeyMapping::KeyMapping() { m_keycode[0] = 0; m_keycode[1] = 0; m_keycode[2] = 0; m_keycode[3] = 0; }