barrier/lib/platform/CXWindowsSecondaryScreen.cpp

1781 lines
51 KiB
C++

/*
* synergy -- mouse and keyboard sharing utility
* Copyright (C) 2002 Chris Schoeneman
*
* This package is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* found in the file COPYING that should have accompanied this file.
*
* This package is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "CXWindowsSecondaryScreen.h"
#include "CXWindowsClipboard.h"
#include "CXWindowsScreen.h"
#include "CXWindowsScreenSaver.h"
#include "CXWindowsUtil.h"
#include "IScreenReceiver.h"
#include "XScreen.h"
#include "CThread.h"
#include "CLog.h"
#if defined(X_DISPLAY_MISSING)
# error X11 is required to build synergy
#else
# include <X11/X.h>
# include <X11/Xutil.h>
# define XK_MISCELLANY
# define XK_XKB_KEYS
# define XK_LATIN1
# define XK_LATIN2
# define XK_LATIN3
# define XK_LATIN4
# define XK_LATIN8
# define XK_LATIN9
# include <X11/keysymdef.h>
# if defined(HAVE_X11_EXTENSIONS_XTEST_H)
# include <X11/extensions/XTest.h>
# else
# error The XTest extension is required to build synergy
# endif
# if HAVE_X11_EXTENSIONS_XINERAMA_H
// Xinerama.h may lack extern "C" for inclusion by C++
extern "C" {
# include <X11/extensions/Xinerama.h>
}
# endif
# if defined(HAVE_X11_XF86KEYSYM_H)
# include <X11/XF86keysym.h>
# endif
# if !defined(XF86XK_Launch0)
# define XF86XK_Launch0 0x1008FF40
# endif
# if !defined(XF86XK_Launch1)
# define XF86XK_Launch1 0x1008FF41
# endif
#endif
//
// CXWindowsSecondaryScreen
//
CXWindowsSecondaryScreen::KeySymsMap
CXWindowsSecondaryScreen::s_decomposedKeySyms;
CXWindowsSecondaryScreen::CXWindowsSecondaryScreen(IScreenReceiver* receiver) :
CSecondaryScreen(),
m_window(None),
m_xtestIsXineramaUnaware(true)
{
m_screen = new CXWindowsScreen(receiver, this);
// make sure decomposed keysym table is prepared
getDecomposedKeySymTable();
}
CXWindowsSecondaryScreen::~CXWindowsSecondaryScreen()
{
assert(m_window == None);
delete m_screen;
}
bool
CXWindowsSecondaryScreen::isAutoRepeating(SysKeyID sysKeyID) const
{
char bit = static_cast<char>(1 << (sysKeyID & 7));
return ((m_keyControl.auto_repeats[sysKeyID >> 3] & bit) != 0);
}
void
CXWindowsSecondaryScreen::flush()
{
CDisplayLock display(m_screen);
if (display != NULL) {
XFlush(display);
}
}
void
CXWindowsSecondaryScreen::resetOptions()
{
CSecondaryScreen::resetOptions();
m_xtestIsXineramaUnaware = true;
}
void
CXWindowsSecondaryScreen::setOptions(const COptionsList& options)
{
CSecondaryScreen::setOptions(options);
for (UInt32 i = 0, n = options.size(); i < n; i += 2) {
if (options[i] == kOptionXTestXineramaUnaware) {
m_xtestIsXineramaUnaware = (options[i + 1] != 0);
LOG((CLOG_DEBUG1 "XTest is Xinerama unaware %s", m_xtestIsXineramaUnaware ? "true" : "false"));
}
}
}
IScreen*
CXWindowsSecondaryScreen::getScreen() const
{
return m_screen;
}
void
CXWindowsSecondaryScreen::onScreensaver(bool)
{
// ignore
}
bool
CXWindowsSecondaryScreen::onPreDispatch(const CEvent*)
{
return false;
}
bool
CXWindowsSecondaryScreen::onEvent(CEvent* event)
{
assert(event != NULL);
XEvent& xevent = event->m_event;
// handle event
switch (xevent.type) {
case MappingNotify: {
// keyboard mapping changed
CDisplayLock display(m_screen);
doUpdateKeys(display);
return true;
}
case LeaveNotify:
// mouse moved out of hider window somehow. hide the window.
hideWindow();
return true;
}
}
void
CXWindowsSecondaryScreen::onOneShotTimerExpired(UInt32)
{
// ignore
}
void
CXWindowsSecondaryScreen::onPreMainLoop()
{
assert(m_window != None);
}
void
CXWindowsSecondaryScreen::onPreOpen()
{
assert(m_window == None);
}
void
CXWindowsSecondaryScreen::onPostOpen()
{
assert(m_window != None);
// get the keyboard control state
CDisplayLock display(m_screen);
XGetKeyboardControl(display, &m_keyControl);
// check if xinerama is enabled and there is more than one screen
m_xinerama = false;
#if HAVE_X11_EXTENSIONS_XINERAMA_H
int eventBase, errorBase;
if (XineramaQueryExtension(display, &eventBase, &errorBase)) {
if (XineramaIsActive(display)) {
int numScreens;
XineramaScreenInfo* screens;
screens = XineramaQueryScreens(display, &numScreens);
if (screens != NULL) {
m_xinerama = (numScreens > 1);
XFree(screens);
}
}
}
#endif
}
void
CXWindowsSecondaryScreen::onPreClose()
{
if (m_keyControl.global_auto_repeat == AutoRepeatModeOn) {
CDisplayLock display(m_screen);
XAutoRepeatOn(display);
}
}
void
CXWindowsSecondaryScreen::onPreEnter()
{
assert(m_window != None);
}
void
CXWindowsSecondaryScreen::onPostEnter()
{
assert(m_window != None);
// get the keyboard control state
CDisplayLock display(m_screen);
XGetKeyboardControl(display, &m_keyControl);
// turn off auto-repeat. we do this so fake key press events don't
// cause the local server to generate their own auto-repeats of
// those keys.
XAutoRepeatOff(display);
}
void
CXWindowsSecondaryScreen::onPreLeave()
{
assert(m_window != None);
// restore the previous keyboard auto-repeat state. if the user
// changed the auto-repeat configuration while on the client then
// that state is lost. that's because we can't get notified by
// the X server when the auto-repeat configuration is changed so
// we can't track the desired configuration.
if (m_keyControl.global_auto_repeat == AutoRepeatModeOn) {
CDisplayLock display(m_screen);
XAutoRepeatOn(display);
}
}
void
CXWindowsSecondaryScreen::createWindow()
{
{
CDisplayLock display(m_screen);
// verify the availability of the XTest extension
int majorOpcode, firstEvent, firstError;
if (!XQueryExtension(display, XTestExtensionName,
&majorOpcode, &firstEvent, &firstError)) {
LOG((CLOG_ERR "XTEST extension not available"));
throw XScreenOpenFailure();
}
// cursor hider window attributes. this window is used to hide the
// cursor when it's not on the screen. the window is hidden as soon
// as the cursor enters the screen or the display's real cursor is
// moved.
XSetWindowAttributes attr;
attr.event_mask = LeaveWindowMask;
attr.do_not_propagate_mask = 0;
attr.override_redirect = True;
attr.cursor = m_screen->getBlankCursor();
// create the cursor hider window
m_window = XCreateWindow(display, m_screen->getRoot(),
0, 0, 1, 1, 0, 0,
InputOnly, CopyFromParent,
CWDontPropagate | CWEventMask |
CWOverrideRedirect | CWCursor,
&attr);
if (m_window == None) {
throw XScreenOpenFailure();
}
LOG((CLOG_DEBUG "window is 0x%08x", m_window));
// become impervious to server grabs
XTestGrabControl(display, True);
}
// tell generic screen about the window
m_screen->setWindow(m_window);
}
void
CXWindowsSecondaryScreen::destroyWindow()
{
{
// release keys that are still pressed
releaseKeys();
CDisplayLock display(m_screen);
if (display != NULL) {
// no longer impervious to server grabs
XTestGrabControl(display, False);
}
}
// destroy window
if (m_window != None) {
m_screen->setWindow(None);
CDisplayLock display(m_screen);
if (display != NULL) {
XDestroyWindow(display, m_window);
}
m_window = None;
}
}
void
CXWindowsSecondaryScreen::showWindow(SInt32 x, SInt32 y)
{
{
CDisplayLock display(m_screen);
// move hider window under the given position
XMoveWindow(display, m_window, x, y);
// raise and show the hider window. take activation.
// FIXME -- take focus?
XMapRaised(display, m_window);
}
// now warp the mouse. we warp after showing the window so we're
// guaranteed to get the mouse leave event and to prevent the
// keyboard focus from changing under point-to-focus policies.
fakeMouseMove(x, y);
}
void
CXWindowsSecondaryScreen::hideWindow()
{
assert(m_window != None);
CDisplayLock display(m_screen);
XUnmapWindow(display, m_window);
}
unsigned int
CXWindowsSecondaryScreen::mapButton(ButtonID id) const
{
// map button -1 to button 4 (+wheel)
if (id == static_cast<ButtonID>(-1)) {
id = 4;
}
// map button -2 to button 5 (-wheel)
else if (id == static_cast<ButtonID>(-2)) {
id = 5;
}
// map buttons 4, 5, etc. to 6, 7, etc. to make room for buttons
// 4 and 5 used to simulate the mouse wheel.
else if (id >= 4) {
id += 2;
}
// check button is in legal range
if (id < 1 || id > m_buttons.size()) {
// out of range
return 0;
}
// map button
return static_cast<unsigned int>(m_buttons[id - 1]);
}
KeyModifierMask
CXWindowsSecondaryScreen::mapKey(Keystrokes& keys,
SysKeyID& keycode, KeyID id,
KeyModifierMask currentMask,
KeyModifierMask desiredMask, EKeyAction action) const
{
// note -- must have display locked on entry
// the system translates key events into characters depending
// on the modifier key state at the time of the event. to
// generate the right keysym we need to set the modifier key
// states appropriately.
//
// desiredMask is the mask desired by the caller. however, there
// may not be a keycode mapping to generate the desired keysym
// with that mask. we override the bits in the mask that cannot
// be accomodated.
// ignore releases and repeats for half-duplex keys
const bool isHalfDuplex = isKeyHalfDuplex(id);
if (isHalfDuplex && action != kPress) {
return currentMask;
}
// convert KeyID to a KeySym
KeySym keysym = keyIDToKeySym(id, desiredMask);
if (keysym == NoSymbol) {
// unknown key
LOG((CLOG_DEBUG2 "no keysym for id 0x%08x", id));
return currentMask;
}
// get the mapping for this keysym
KeySymIndex keyIndex = m_keysymMap.find(keysym);
// if the mapping isn't found and keysym is caps lock sensitive
// then convert the case of the keysym and try again.
if (keyIndex == m_keysymMap.end()) {
KeySym lKey, uKey;
XConvertCase(keysym, &lKey, &uKey);
if (lKey != uKey) {
if (lKey == keysym) {
keyIndex = m_keysymMap.find(uKey);
}
else {
keyIndex = m_keysymMap.find(lKey);
}
}
}
if (keyIndex != m_keysymMap.end()) {
// the keysym is mapped to some keycode. if it's a modifier
// and that modifier is already in the desired state then
// ignore the request since there's nothing to do. never
// ignore a toggle modifier on press or release, though.
const KeyMapping& keyMapping = keyIndex->second;
const KeyModifierMask modifierBit = keyMapping.m_modifierMask;
if (modifierBit != 0) {
if (action == kRepeat) {
LOG((CLOG_DEBUG2 "ignore repeating modifier"));
return currentMask;
}
if ((m_toggleModifierMask & modifierBit) == 0) {
if ((action == kPress && (currentMask & modifierBit) != 0) ||
(action == kRelease && (currentMask & modifierBit) == 0)) {
LOG((CLOG_DEBUG2 "modifier in proper state: 0x%04x", currentMask));
return currentMask;
}
}
}
// create the keystrokes for this keysym
KeyModifierMask mask;
if (!mapToKeystrokes(keys, keycode, mask,
keyIndex, currentMask, action, isHalfDuplex)) {
// failed to generate keystrokes
keys.clear();
return currentMask;
}
else {
// success
LOG((CLOG_DEBUG2 "new mask: 0x%04x", mask));
return mask;
}
}
// we can't find the keysym mapped to any keycode. this doesn't
// necessarily mean we can't generate the keysym, though. if the
// keysym can be created by combining keysyms then we may still
// be okay.
KeySyms decomposition;
if (decomposeKeySym(keysym, decomposition)) {
LOG((CLOG_DEBUG2 "decomposed keysym 0x%08x into %d keysyms", keysym, decomposition.size()));
// map each decomposed keysym to keystrokes. we want the mask
// and the keycode from the last keysym (which should be the
// only non-dead key). the dead keys are not sensitive to
// anything but shift and mode switch.
KeyModifierMask mask;
for (KeySyms::const_iterator i = decomposition.begin();
i != decomposition.end();) {
// increment the iterator
KeySyms::const_iterator next = i;
++next;
// lookup the key
keysym = *i;
keyIndex = m_keysymMap.find(keysym);
if (keyIndex == m_keysymMap.end()) {
// missing a required keysym
LOG((CLOG_DEBUG2 "no keycode for decomposed keysym 0x%08x", keysym));
keys.clear();
return currentMask;
}
// the keysym is mapped to some keycode
if (!mapToKeystrokes(keys, keycode, mask,
keyIndex, currentMask, action, isHalfDuplex)) {
// failed to generate keystrokes
keys.clear();
return currentMask;
}
// on to the next keysym
i = next;
}
LOG((CLOG_DEBUG2 "new mask: 0x%04x", mask));
return mask;
}
LOG((CLOG_DEBUG2 "no keycode for keysym"));
return currentMask;
}
KeyModifierMask
CXWindowsSecondaryScreen::getModifierKeyMask(SysKeyID keycode) const
{
KeyCodeToModifierMap::const_iterator i = m_keycodeToModifier.find(keycode);
if (i == m_keycodeToModifier.end()) {
return 0;
}
return m_modifierIndexToMask[i->second];
}
bool
CXWindowsSecondaryScreen::isModifierActive(SysKeyID keycode) const
{
// check if any keycode for this modifier is down. return false
// for toggle modifiers.
KeyCodeToModifierMap::const_iterator i = m_keycodeToModifier.find(keycode);
if (i != m_keycodeToModifier.end() &&
(m_modifierIndexToMask[i->second] & m_toggleModifierMask) != 0) {
const KeyCodes& keycodes = m_modifierKeycodes[i->second];
for (KeyCodes::const_iterator j = keycodes.begin();
j != keycodes.end(); ++j) {
if (isKeyDown(*j)) {
return true;
}
}
}
return false;
}
unsigned int
CXWindowsSecondaryScreen::findBestKeyIndex(KeySymIndex keyIndex,
KeyModifierMask /*currentMask*/) const
{
// there are up to 4 keycodes per keysym to choose from. the
// best choice is the one that requires the fewest adjustments
// to the modifier state. for example, the letter A normally
// requires shift + a. if shift isn't already down we'd have
// to synthesize a shift press before the a press. however,
// if A could also be created with some other keycode without
// shift then we'd prefer that when shift wasn't down.
//
// if the action is kRepeat or kRelease then we don't call this
// method since we just need to synthesize a key repeat/release
// on the same keycode that we pressed.
// XXX -- do this right
for (unsigned int i = 0; i < 4; ++i) {
if (keyIndex->second.m_keycode[i] != 0) {
return i;
}
}
assert(0 && "no keycode found for keysym");
return 0;
}
bool
CXWindowsSecondaryScreen::isShiftInverted(KeySymIndex keyIndex,
KeyModifierMask currentMask) const
{
// each keycode has up to 4 keysym associated with it, one each for:
// no modifiers, shift, mode switch, and shift and mode switch. if
// a keysym is modified by num lock and num lock is active then you
// get the shifted keysym when shift is not down and the unshifted
// keysym when it is. that is, num lock inverts the sense of the
// shift modifier when active. similarly for caps lock. this
// method returns true iff the sense of shift should be inverted
// for this key given a modifier state.
if (keyIndex->second.m_numLockSensitive) {
if ((currentMask & KeyModifierNumLock) != 0) {
return true;
}
}
// if a keysym is num lock sensitive it is never caps lock
// sensitive, thus the else here.
else if (keyIndex->second.m_capsLockSensitive) {
if ((currentMask & KeyModifierCapsLock) != 0) {
return true;
}
}
return false;
}
bool
CXWindowsSecondaryScreen::mapToKeystrokes(Keystrokes& keys,
SysKeyID& keycode,
KeyModifierMask& finalMask,
KeySymIndex keyIndex,
KeyModifierMask currentMask,
EKeyAction action,
bool isHalfDuplex) const
{
// keyIndex must be valid
assert(keyIndex != m_keysymMap.end());
// get the keysym we're trying to generate and possible keycodes
const KeySym keysym = keyIndex->first;
const KeyMapping& mapping = keyIndex->second;
LOG((CLOG_DEBUG2 "keysym = 0x%08x", keysym));
// get the best keycode index for the keysym and modifiers. note
// that (bestIndex & 1) == 0 if the keycode is a shift modifier
// and (bestIndex & 2) == 0 if the keycode is a mode switch
// modifier. this is important later because we don't want
// adjustModifiers() to adjust a modifier if that's the key we're
// mapping.
unsigned int bestIndex = findBestKeyIndex(keyIndex, currentMask);
// get the keycode
keycode = mapping.m_keycode[bestIndex];
// flip low bit of bestIndex if shift is inverted. if there's a
// keycode for this new index then use it. otherwise use the old
// keycode. you'd think we should fail if there isn't a keycode
// for the new index but some keymaps only include the upper case
// keysyms (notably those on Sun Solaris) so to handle the missing
// lower case keysyms we just use the old keycode. note that
// isShiftInverted() will always return false for a shift modifier.
if (isShiftInverted(keyIndex, currentMask)) {
LOG((CLOG_DEBUG2 "shift is inverted"));
bestIndex ^= 1;
if (mapping.m_keycode[bestIndex] != 0) {
keycode = mapping.m_keycode[bestIndex];
}
}
LOG((CLOG_DEBUG2 "bestIndex = %d, keycode = %d", bestIndex, keycode));
// compute desired mask. the desired mask is the one that matches
// bestIndex, except if the key being synthesized is a shift key
// where we desire what we already have or if it's the mode switch
// key where we only desire to adjust shift. also, if the keycode
// is not sensitive to shift then don't adjust it, otherwise
// something like shift+home would become just home. similiarly
// for mode switch.
KeyModifierMask desiredMask = currentMask;
if (keyIndex->second.m_modifierMask != KeyModifierShift) {
if (keyIndex->second.m_shiftSensitive[bestIndex]) {
if ((bestIndex & 1) != 0) {
desiredMask |= KeyModifierShift;
}
else {
desiredMask &= ~KeyModifierShift;
}
}
if (keyIndex->second.m_modifierMask != KeyModifierModeSwitch) {
if (keyIndex->second.m_modeSwitchSensitive[bestIndex]) {
if ((bestIndex & 2) != 0) {
desiredMask |= KeyModifierModeSwitch;
}
else {
desiredMask &= ~KeyModifierModeSwitch;
}
}
}
}
// adjust the modifiers to match the desired modifiers
Keystrokes undo;
KeyModifierMask tmpMask = currentMask;
if (!adjustModifiers(keys, undo, tmpMask, desiredMask)) {
LOG((CLOG_DEBUG2 "failed to adjust modifiers"));
return false;
}
// note if the press of a half-duplex key should be treated as a release
if (isHalfDuplex && (currentMask & mapping.m_modifierMask) != 0) {
action = kRelease;
}
// add the key event
Keystroke keystroke;
keystroke.m_sysKeyID = keycode;
switch (action) {
case kPress:
keystroke.m_press = true;
keystroke.m_repeat = false;
keys.push_back(keystroke);
break;
case kRelease:
keystroke.m_press = false;
keystroke.m_repeat = false;
keys.push_back(keystroke);
break;
case kRepeat:
keystroke.m_press = false;
keystroke.m_repeat = true;
keys.push_back(keystroke);
keystroke.m_press = true;
keys.push_back(keystroke);
break;
}
// put undo keystrokes at end of keystrokes in reverse order
while (!undo.empty()) {
keys.push_back(undo.back());
undo.pop_back();
}
// if the key is a modifier key then compute the modifier map after
// this key is pressed or released.
finalMask = currentMask;
if (mapping.m_modifierMask != 0) {
// can't be repeating if we've gotten here
assert(action != kRepeat);
// toggle keys modify the state on release. other keys set the
// bit on press and clear the bit on release. if half-duplex
// then toggle each time we get here.
if ((m_toggleModifierMask & mapping.m_modifierMask) != 0) {
if (isHalfDuplex) {
finalMask ^= mapping.m_modifierMask;
}
}
else if (action == kPress) {
finalMask |= mapping.m_modifierMask;
}
}
return true;
}
bool
CXWindowsSecondaryScreen::adjustModifiers(Keystrokes& keys,
Keystrokes& undo,
KeyModifierMask& inOutMask,
KeyModifierMask desiredMask) const
{
// get mode switch set correctly. do this before shift because
// mode switch may be sensitive to the shift modifier and will
// set/reset it as necessary.
const bool wantModeSwitch = ((desiredMask & KeyModifierModeSwitch) != 0);
const bool haveModeSwitch = ((inOutMask & KeyModifierModeSwitch) != 0);
if (wantModeSwitch != haveModeSwitch) {
LOG((CLOG_DEBUG2 "fix mode switch"));
// adjust shift if necessary
KeySymIndex modeSwitchIndex = m_keysymMap.find(m_modeSwitchKeysym);
assert(modeSwitchIndex != m_keysymMap.end());
if (modeSwitchIndex->second.m_shiftSensitive[0]) {
const bool wantShift = false;
const bool haveShift = ((inOutMask & KeyModifierShift) != 0);
if (wantShift != haveShift) {
// add shift keystrokes
LOG((CLOG_DEBUG2 "fix shift for mode switch"));
if (!adjustModifier(keys, undo, m_shiftKeysym, wantShift)) {
return false;
}
inOutMask ^= KeyModifierShift;
}
}
// add mode switch keystrokes
if (!adjustModifier(keys, undo, m_modeSwitchKeysym, wantModeSwitch)) {
return false;
}
inOutMask ^= KeyModifierModeSwitch;
}
// get shift set correctly
const bool wantShift = ((desiredMask & KeyModifierShift) != 0);
const bool haveShift = ((inOutMask & KeyModifierShift) != 0);
if (wantShift != haveShift) {
// add shift keystrokes
LOG((CLOG_DEBUG2 "fix shift"));
if (!adjustModifier(keys, undo, m_shiftKeysym, wantShift)) {
return false;
}
inOutMask ^= KeyModifierShift;
}
return true;
}
bool
CXWindowsSecondaryScreen::adjustModifier(Keystrokes& keys,
Keystrokes& undo, KeySym keysym, bool desireActive) const
{
// this method generates keystrokes to change a modifier into the
// desired state. under X11, we only expect to adjust the shift
// and mode switch states. other modifiers don't affect keysym
// generation, except num lock and caps lock and we don't change
// those but instead just invert the handling of the shift key.
// we don't check here if the modifier is already in the desired
// state; the caller should do that.
// get the key mapping for keysym
KeySymIndex keyIndex = m_keysymMap.find(keysym);
if (keyIndex == m_keysymMap.end() || keyIndex->second.m_keycode[0] == 0) {
// no keycode for keysym or keycode is not a modifier
LOG((CLOG_DEBUG2 "no modifier for 0x%08x", keysym));
return false;
}
// this had better be a modifier
assert(keyIndex->second.m_modifierMask != 0);
// we do not handle toggle modifiers here. they never need to be
// adjusted
assert((keyIndex->second.m_modifierMask & m_toggleModifierMask) == 0);
// initialize keystroke
Keystroke keystroke;
keystroke.m_repeat = false;
// releasing a modifier is quite different from pressing one.
// when we release a modifier we have to release every keycode that
// is assigned to the modifier since the modifier is active if any
// one of them is down. when we press a modifier we just have to
// press one of those keycodes.
if (desireActive) {
// press
keystroke.m_sysKeyID = keyIndex->second.m_keycode[0];
keystroke.m_press = true;
keys.push_back(keystroke);
keystroke.m_press = false;
undo.push_back(keystroke);
}
else {
// release
KeyCodeToModifierMap::const_iterator index =
m_keycodeToModifier.find(keyIndex->second.m_keycode[0]);
if (index != m_keycodeToModifier.end()) {
const KeyCodes& keycodes = m_modifierKeycodes[index->second];
for (KeyCodes::const_iterator j = keycodes.begin();
j != keycodes.end(); ++j) {
if (isKeyDown(*j)) {
keystroke.m_sysKeyID = *j;
keystroke.m_press = false;
keys.push_back(keystroke);
keystroke.m_press = true;
undo.push_back(keystroke);
}
}
}
}
return true;
}
void
CXWindowsSecondaryScreen::fakeKeyEvent(SysKeyID keycode, bool press) const
{
CDisplayLock display(m_screen);
if (display != NULL) {
XTestFakeKeyEvent(display, keycode, press ? True : False, CurrentTime);
}
}
void
CXWindowsSecondaryScreen::fakeMouseButton(ButtonID button, bool press) const
{
const unsigned int xButton = mapButton(button);
if (xButton != 0) {
CDisplayLock display(m_screen);
if (display != NULL) {
XTestFakeButtonEvent(display, xButton,
press ? True : False, CurrentTime);
}
}
}
void
CXWindowsSecondaryScreen::fakeMouseMove(SInt32 x, SInt32 y) const
{
CDisplayLock display(m_screen);
if (m_xinerama && m_xtestIsXineramaUnaware) {
XWarpPointer(display, None, m_screen->getRoot(), 0, 0, 0, 0, x, y);
}
else {
Display* pDisplay = display;
XTestFakeMotionEvent(display, DefaultScreen(pDisplay),
x, y, CurrentTime);
}
}
void
CXWindowsSecondaryScreen::fakeMouseWheel(SInt32 delta) const
{
// choose button depending on rotation direction
const unsigned int xButton = mapButton(static_cast<ButtonID>(
(delta >= 0) ? -1 : -2));
if (xButton == 0) {
return;
}
// now use absolute value of delta
if (delta < 0) {
delta = -delta;
}
// send as many clicks as necessary
CDisplayLock display(m_screen);
for (; delta >= 120; delta -= 120) {
XTestFakeButtonEvent(display, xButton, True, CurrentTime);
XTestFakeButtonEvent(display, xButton, False, CurrentTime);
}
}
void
CXWindowsSecondaryScreen::doUpdateKeys(Display* display)
{
// query the button mapping
UInt32 numButtons = XGetPointerMapping(display, NULL, 0);
unsigned char* tmpButtons = new unsigned char[numButtons];
XGetPointerMapping(display, tmpButtons, numButtons);
// find the largest logical button id
unsigned char maxButton = 0;
for (UInt32 i = 0; i < numButtons; ++i) {
if (tmpButtons[i] > maxButton) {
maxButton = tmpButtons[i];
}
}
// allocate button array
m_buttons.resize(maxButton);
// fill in button array values. m_buttons[i] is the physical
// button number for logical button i+1.
for (UInt32 i = 0; i < numButtons; ++i) {
m_buttons[i] = 0;
}
for (UInt32 i = 0; i < numButtons; ++i) {
m_buttons[tmpButtons[i] - 1] = i + 1;
}
// clean up
delete[] tmpButtons;
// update mappings
updateKeysymMap(display);
}
void
CXWindowsSecondaryScreen::updateKeys(KeyState* keys)
{
CDisplayLock display(m_screen);
// ask server which keys are pressed
char xkeys[32];
XQueryKeymap(display, xkeys);
// transfer to our state
for (UInt32 i = 0, j = 0; i < 32; j += 8, ++i) {
keys[j + 0] = ((xkeys[i] & 0x01) != 0) ? kDown : 0;
keys[j + 1] = ((xkeys[i] & 0x02) != 0) ? kDown : 0;
keys[j + 2] = ((xkeys[i] & 0x04) != 0) ? kDown : 0;
keys[j + 3] = ((xkeys[i] & 0x08) != 0) ? kDown : 0;
keys[j + 4] = ((xkeys[i] & 0x10) != 0) ? kDown : 0;
keys[j + 5] = ((xkeys[i] & 0x20) != 0) ? kDown : 0;
keys[j + 6] = ((xkeys[i] & 0x40) != 0) ? kDown : 0;
keys[j + 7] = ((xkeys[i] & 0x80) != 0) ? kDown : 0;
}
// update mappings and current modifiers and mouse buttons
doUpdateKeys(display);
}
void
CXWindowsSecondaryScreen::updateKeysymMap(Display* display)
{
// there are up to 4 keysyms per keycode
static const unsigned int maxKeysyms = 4;
// get the number of keycodes
int minKeycode, maxKeycode;
XDisplayKeycodes(display, &minKeycode, &maxKeycode);
const int numKeycodes = maxKeycode - minKeycode + 1;
// get the keyboard mapping for all keys
int keysymsPerKeycode;
KeySym* keysyms = XGetKeyboardMapping(display,
minKeycode, numKeycodes,
&keysymsPerKeycode);
// we only understand up to maxKeysyms keysyms per keycodes
unsigned int numKeysyms = keysymsPerKeycode;
if (numKeysyms > maxKeysyms) {
numKeysyms = maxKeysyms;
}
// get modifier map from server
XModifierKeymap* modifiers = XGetModifierMapping(display);
// determine shift and mode switch sensitivity. a keysym is shift
// or mode switch sensitive if its keycode is. a keycode is mode
// mode switch sensitive if it has keysyms for indices 2 or 3.
// it's shift sensitive if the keysym for index 1 (if any) is
// different from the keysym for index 0 and, if the keysym for
// for index 3 (if any) is different from the keysym for index 2.
// that is, if shift changes the generated keysym for the keycode.
std::vector<bool> usesShift(numKeycodes);
std::vector<bool> usesModeSwitch(numKeycodes);
for (int i = 0; i < numKeycodes; ++i) {
// check mode switch first
if (numKeysyms > 2 &&
keysyms[i * keysymsPerKeycode + 2] != NoSymbol ||
keysyms[i * keysymsPerKeycode + 3] != NoSymbol) {
usesModeSwitch[i] = true;
}
// check index 0 with index 1 keysyms
if (keysyms[i * keysymsPerKeycode + 0] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 1] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 1] !=
keysyms[i * keysymsPerKeycode + 0]) {
usesShift[i] = true;
}
else if (numKeysyms >= 4 &&
keysyms[i * keysymsPerKeycode + 2] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 3] != NoSymbol &&
keysyms[i * keysymsPerKeycode + 3] !=
keysyms[i * keysymsPerKeycode + 2]) {
usesShift[i] = true;
}
}
// initialize
m_keysymMap.clear();
int keysPerModifier = modifiers->max_keypermod;
// for each modifier keycode, get the index 0 keycode and add it to
// the keysym map. also collect all keycodes for each modifier.
m_keycodeToModifier.clear();
for (ModifierIndex i = 0; i < 8; ++i) {
// start with no keycodes for this modifier
m_modifierKeycodes[i].clear();
// no mask for this modifier
m_modifierIndexToMask[i] = 0;
// add each keycode for modifier
for (unsigned int j = 0; j < keysPerModifier; ++j) {
// get keycode and ignore unset keycodes
KeyCode keycode = modifiers->modifiermap[i * keysPerModifier + j];
if (keycode == 0) {
continue;
}
// save keycode for modifier and modifier for keycode
m_modifierKeycodes[i].push_back(keycode);
m_keycodeToModifier[keycode] = i;
// get keysym and get/create key mapping
const int keycodeIndex = keycode - minKeycode;
const KeySym keysym = keysyms[keycodeIndex *
keysymsPerKeycode + 0];
KeyMapping& mapping = m_keysymMap[keysym];
// skip if we already have a keycode for this index
if (mapping.m_keycode[0] != 0) {
continue;
}
// save modifier mask
m_modifierIndexToMask[i] = mapToModifierMask(i, keysym);
// fill in keysym info
mapping.m_keycode[0] = keycode;
mapping.m_shiftSensitive[0] = usesShift[keycodeIndex];
mapping.m_modeSwitchSensitive[0] = usesModeSwitch[keycodeIndex];
mapping.m_modifierMask = m_modifierIndexToMask[i];
mapping.m_capsLockSensitive = false;
mapping.m_numLockSensitive = false;
}
}
// create a convenient NoSymbol entry (if it doesn't exist yet).
// sometimes it's useful to handle NoSymbol like a normal keysym.
// remove any entry for NoSymbol. that keysym doesn't count.
{
KeyMapping& mapping = m_keysymMap[NoSymbol];
for (unsigned int i = 0; i < numKeysyms; ++i) {
mapping.m_keycode[i] = 0;
mapping.m_shiftSensitive[i] = false;
mapping.m_modeSwitchSensitive[i] = false;
}
mapping.m_modifierMask = 0;
mapping.m_capsLockSensitive = false;
mapping.m_numLockSensitive = false;
}
// add each keysym to the map, unless we've already inserted a key
// for that keysym index.
for (int i = 0; i < numKeycodes; ++i) {
for (unsigned int j = 0; j < numKeysyms; ++j) {
// lookup keysym
const KeySym keysym = keysyms[i * keysymsPerKeycode + j];
if (keysym == NoSymbol) {
continue;
}
KeyMapping& mapping = m_keysymMap[keysym];
// skip if we already have a keycode for this index
if (mapping.m_keycode[j] != 0) {
continue;
}
// fill in keysym info
if (mapping.m_keycode[0] == 0) {
mapping.m_modifierMask = 0;
}
mapping.m_keycode[j] = static_cast<KeyCode>(
minKeycode + i);
mapping.m_shiftSensitive[j] = usesShift[i];
mapping.m_modeSwitchSensitive[j] = usesModeSwitch[i];
mapping.m_numLockSensitive = adjustForNumLock(keysym);
mapping.m_capsLockSensitive = adjustForCapsLock(keysym);
}
}
// choose the keysym to use for each modifier. if the modifier
// isn't mapped then use NoSymbol. if a modifier has both left
// and right versions then (arbitrarily) prefer the left. also
// collect the available modifier bits.
struct CModifierBitInfo {
public:
KeySym CXWindowsSecondaryScreen::*m_keysym;
KeySym m_left;
KeySym m_right;
};
static const CModifierBitInfo s_modifierBitTable[] = {
{ &CXWindowsSecondaryScreen::m_shiftKeysym, XK_Shift_L, XK_Shift_R },
{ &CXWindowsSecondaryScreen::m_ctrlKeysym, XK_Control_L, XK_Control_R },
{ &CXWindowsSecondaryScreen::m_altKeysym, XK_Alt_L, XK_Alt_R },
{ &CXWindowsSecondaryScreen::m_metaKeysym, XK_Meta_L, XK_Meta_R },
{ &CXWindowsSecondaryScreen::m_superKeysym, XK_Super_L, XK_Super_R },
{ &CXWindowsSecondaryScreen::m_modeSwitchKeysym, XK_Mode_switch, NoSymbol },
{ &CXWindowsSecondaryScreen::m_numLockKeysym, XK_Num_Lock, NoSymbol },
{ &CXWindowsSecondaryScreen::m_capsLockKeysym, XK_Caps_Lock, NoSymbol },
{ &CXWindowsSecondaryScreen::m_scrollLockKeysym, XK_Scroll_Lock, NoSymbol }
};
m_modifierMask = 0;
m_toggleModifierMask = 0;
for (size_t i = 0; i < sizeof(s_modifierBitTable) /
sizeof(s_modifierBitTable[0]); ++i) {
const CModifierBitInfo& info = s_modifierBitTable[i];
// find available keysym
KeySymIndex keyIndex = m_keysymMap.find(info.m_left);
if (keyIndex == m_keysymMap.end() && info.m_right != NoSymbol) {
keyIndex = m_keysymMap.find(info.m_right);
}
if (keyIndex != m_keysymMap.end() &&
keyIndex->second.m_modifierMask != 0) {
this->*(info.m_keysym) = keyIndex->first;
}
else {
this->*(info.m_keysym) = NoSymbol;
continue;
}
// add modifier bit
m_modifierMask |= keyIndex->second.m_modifierMask;
if (isToggleKeysym(this->*(info.m_keysym))) {
m_toggleModifierMask |= keyIndex->second.m_modifierMask;
}
}
// if there's no mode switch key mapped then remove all keycodes
// that depend on it and no keycode can be mode switch sensitive.
if (m_modeSwitchKeysym == NoSymbol) {
LOG((CLOG_DEBUG2 "no mode switch in keymap"));
for (KeySymMap::iterator i = m_keysymMap.begin();
i != m_keysymMap.end(); ) {
i->second.m_keycode[2] = 0;
i->second.m_keycode[3] = 0;
i->second.m_modeSwitchSensitive[0] = false;
i->second.m_modeSwitchSensitive[1] = false;
i->second.m_modeSwitchSensitive[2] = false;
i->second.m_modeSwitchSensitive[3] = false;
// if this keysym no has no keycodes then remove it
// except for the NoSymbol keysym mapping.
if (i->second.m_keycode[0] == 0 && i->second.m_keycode[1] == 0) {
m_keysymMap.erase(i++);
}
else {
++i;
}
}
}
// clean up
XFree(keysyms);
XFreeModifiermap(modifiers);
}
KeyModifierMask
CXWindowsSecondaryScreen::getModifiers() const
{
CDisplayLock display(m_screen);
// query the pointer to get the keyboard state
Window root, window;
int xRoot, yRoot, xWindow, yWindow;
unsigned int state;
if (!XQueryPointer(display, m_window, &root, &window,
&xRoot, &yRoot, &xWindow, &yWindow, &state)) {
state = 0;
}
// update active modifier mask
KeyModifierMask mask = 0;
for (ModifierIndex i = 0; i < 8; ++i) {
const KeyModifierMask bit = m_modifierIndexToMask[i];
if ((bit & m_toggleModifierMask) == 0) {
for (KeyCodes::const_iterator j = m_modifierKeycodes[i].begin();
j != m_modifierKeycodes[i].end(); ++j) {
// XXX -- is this right?
if (isKeyDown(*j)) {
mask |= bit;
break;
}
}
}
else if ((bit & state) != 0) {
// toggle is on
mask |= bit;
}
}
return mask;
}
CSecondaryScreen::SysKeyID
CXWindowsSecondaryScreen::getToggleSysKey(KeyID keyID) const
{
// convert KeyID to KeySym
KeySym keysym;
switch (keyID) {
case kKeyNumLock:
keysym = m_numLockKeysym;
break;
case kKeyCapsLock:
keysym = m_capsLockKeysym;
break;
case kKeyScrollLock:
keysym = m_scrollLockKeysym;
break;
default:
return 0;
}
// lookup the key mapping
KeySymIndex index = m_keysymMap.find(keysym);
if (index == m_keysymMap.end()) {
return 0;
}
return index->second.m_keycode[0];
}
bool
CXWindowsSecondaryScreen::isToggleKeysym(KeySym key)
{
switch (key) {
case XK_Caps_Lock:
case XK_Shift_Lock:
case XK_Num_Lock:
case XK_Scroll_Lock:
return true;
default:
return false;
}
}
KeyModifierMask
CXWindowsSecondaryScreen::mapToModifierMask(
ModifierIndex i, KeySym keysym) const
{
// some modifier indices (0,1,2) are dedicated to particular uses,
// the rest depend on the keysyms bound.
switch (i) {
case 0:
return KeyModifierShift;
case 1:
return KeyModifierCapsLock;
case 2:
return KeyModifierControl;
default:
switch (keysym) {
case XK_Shift_L:
case XK_Shift_R:
return KeyModifierShift;
case XK_Control_L:
case XK_Control_R:
return KeyModifierControl;
case XK_Alt_L:
case XK_Alt_R:
return KeyModifierAlt;
case XK_Meta_L:
case XK_Meta_R:
return KeyModifierMeta;
case XK_Super_L:
case XK_Super_R:
return KeyModifierSuper;
case XK_Mode_switch:
return KeyModifierModeSwitch;
case XK_Caps_Lock:
return KeyModifierCapsLock;
case XK_Num_Lock:
return KeyModifierNumLock;
case XK_Scroll_Lock:
return KeyModifierScrollLock;
default:
return 0;
}
}
}
// map special KeyID keys to KeySyms
#if defined(HAVE_X11_XF86KEYSYM_H)
static const KeySym g_mapE000[] =
{
/* 0x00 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x08 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x10 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x18 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x20 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x28 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x30 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x38 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x40 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x48 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x50 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x58 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x60 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x68 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x70 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x78 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x80 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x88 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x90 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x98 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xa0 */ 0, 0, 0, 0,
/* 0xa4 */ 0, 0,
/* 0xa6 */ XF86XK_Back, XF86XK_Forward,
/* 0xa8 */ XF86XK_Refresh, XF86XK_Stop,
/* 0xaa */ XF86XK_Search, XF86XK_Favorites,
/* 0xac */ XF86XK_HomePage, XF86XK_AudioMute,
/* 0xae */ XF86XK_AudioLowerVolume, XF86XK_AudioRaiseVolume,
/* 0xb0 */ XF86XK_AudioNext, XF86XK_AudioPrev,
/* 0xb2 */ XF86XK_AudioStop, XF86XK_AudioPlay,
/* 0xb4 */ XF86XK_Mail, XF86XK_AudioMedia,
/* 0xb6 */ XF86XK_Launch0, XF86XK_Launch1,
/* 0xb8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf8 */ 0, 0, 0, 0, 0, 0, 0, 0
};
#endif
KeySym
CXWindowsSecondaryScreen::keyIDToKeySym(KeyID id, KeyModifierMask mask) const
{
// convert id to keysym
KeySym keysym = NoSymbol;
if ((id & 0xfffff000) == 0xe000) {
// special character
switch (id & 0x0000ff00) {
#if defined(HAVE_X11_XF86KEYSYM_H)
case 0xe000:
return g_mapE000[id & 0xff];
#endif
case 0xee00:
// ISO 9995 Function and Modifier Keys
if (id == kKeyLeftTab) {
keysym = XK_ISO_Left_Tab;
}
break;
case 0xef00:
// MISCELLANY
keysym = static_cast<KeySym>(id - 0xef00 + 0xff00);
break;
}
}
else if ((id >= 0x0020 && id <= 0x007e) ||
(id >= 0x00a0 && id <= 0x00ff)) {
// Latin-1 maps directly
return static_cast<KeySym>(id);
}
else {
// lookup keysym in table
return CXWindowsUtil::mapUCS4ToKeySym(id);
}
// fail if unknown key
if (keysym == NoSymbol) {
return keysym;
}
// if kKeyTab is requested with shift active then try XK_ISO_Left_Tab
// instead. if that doesn't work, we'll fall back to XK_Tab with
// shift active. this is to handle primary screens that don't map
// XK_ISO_Left_Tab sending events to secondary screens that do.
if (keysym == XK_Tab && (mask & KeyModifierShift) != 0) {
keysym = XK_ISO_Left_Tab;
}
// some keysyms have emergency backups (particularly the numpad
// keys since most laptops don't have a separate numpad and the
// numpad overlaying the main keyboard may not have movement
// key bindings). figure out the emergency backup.
KeySym backupKeysym;
switch (keysym) {
case XK_KP_Home:
backupKeysym = XK_Home;
break;
case XK_KP_Left:
backupKeysym = XK_Left;
break;
case XK_KP_Up:
backupKeysym = XK_Up;
break;
case XK_KP_Right:
backupKeysym = XK_Right;
break;
case XK_KP_Down:
backupKeysym = XK_Down;
break;
case XK_KP_Prior:
backupKeysym = XK_Prior;
break;
case XK_KP_Next:
backupKeysym = XK_Next;
break;
case XK_KP_End:
backupKeysym = XK_End;
break;
case XK_KP_Insert:
backupKeysym = XK_Insert;
break;
case XK_KP_Delete:
backupKeysym = XK_Delete;
break;
case XK_ISO_Left_Tab:
backupKeysym = XK_Tab;
break;
default:
backupKeysym = keysym;
break;
}
// see if the keysym is assigned to any keycode. if not and the
// backup keysym is then use the backup keysym.
if (backupKeysym != keysym &&
m_keysymMap.find(keysym) == m_keysymMap.end() &&
m_keysymMap.find(backupKeysym) != m_keysymMap.end()) {
keysym = backupKeysym;
}
return keysym;
}
bool
CXWindowsSecondaryScreen::decomposeKeySym(KeySym keysym,
KeySyms& decomposed) const
{
// unfortunately, X11 doesn't appear to have any way of
// decomposing a keysym into its component keysyms. we'll
// use a lookup table for certain character sets.
const KeySymsMap& table = getDecomposedKeySymTable();
KeySymsMap::const_iterator i = table.find(keysym);
if (i == table.end()) {
return false;
}
decomposed = i->second;
return true;
}
bool
CXWindowsSecondaryScreen::adjustForNumLock(KeySym keysym) const
{
return (IsKeypadKey(keysym) || IsPrivateKeypadKey(keysym));
}
bool
CXWindowsSecondaryScreen::adjustForCapsLock(KeySym keysym) const
{
KeySym lKey, uKey;
XConvertCase(keysym, &lKey, &uKey);
return (lKey != uKey);
}
const CXWindowsSecondaryScreen::KeySymsMap&
CXWindowsSecondaryScreen::getDecomposedKeySymTable()
{
static const KeySym s_rawTable[] = {
// non-dead version of dead keys
XK_grave, XK_dead_grave, XK_space, 0,
XK_acute, XK_dead_acute, XK_space, 0,
XK_asciicircum, XK_dead_circumflex, XK_space, 0,
XK_asciitilde, XK_dead_tilde, XK_space, 0,
XK_cedilla, XK_dead_cedilla, XK_space, 0,
XK_ogonek, XK_dead_ogonek, XK_space, 0,
XK_caron, XK_dead_caron, XK_space, 0,
XK_abovedot, XK_dead_abovedot, XK_space, 0,
XK_doubleacute, XK_dead_doubleacute, XK_space, 0,
XK_breve, XK_dead_breve, XK_space, 0,
XK_macron, XK_dead_macron, XK_space, 0,
// Latin-1 (ISO 8859-1)
XK_Agrave, XK_dead_grave, XK_A, 0,
XK_Aacute, XK_dead_acute, XK_A, 0,
XK_Acircumflex, XK_dead_circumflex, XK_A, 0,
XK_Atilde, XK_dead_tilde, XK_A, 0,
XK_Adiaeresis, XK_dead_diaeresis, XK_A, 0,
XK_Aring, XK_dead_abovering, XK_A, 0,
XK_Ccedilla, XK_dead_cedilla, XK_C, 0,
XK_Egrave, XK_dead_grave, XK_E, 0,
XK_Eacute, XK_dead_acute, XK_E, 0,
XK_Ecircumflex, XK_dead_circumflex, XK_E, 0,
XK_Ediaeresis, XK_dead_diaeresis, XK_E, 0,
XK_Igrave, XK_dead_grave, XK_I, 0,
XK_Iacute, XK_dead_acute, XK_I, 0,
XK_Icircumflex, XK_dead_circumflex, XK_I, 0,
XK_Idiaeresis, XK_dead_diaeresis, XK_I, 0,
XK_Ntilde, XK_dead_tilde, XK_N, 0,
XK_Ograve, XK_dead_grave, XK_O, 0,
XK_Oacute, XK_dead_acute, XK_O, 0,
XK_Ocircumflex, XK_dead_circumflex, XK_O, 0,
XK_Otilde, XK_dead_tilde, XK_O, 0,
XK_Odiaeresis, XK_dead_diaeresis, XK_O, 0,
XK_Ugrave, XK_dead_grave, XK_U, 0,
XK_Uacute, XK_dead_acute, XK_U, 0,
XK_Ucircumflex, XK_dead_circumflex, XK_U, 0,
XK_Udiaeresis, XK_dead_diaeresis, XK_U, 0,
XK_Yacute, XK_dead_acute, XK_Y, 0,
XK_agrave, XK_dead_grave, XK_a, 0,
XK_aacute, XK_dead_acute, XK_a, 0,
XK_acircumflex, XK_dead_circumflex, XK_a, 0,
XK_atilde, XK_dead_tilde, XK_a, 0,
XK_adiaeresis, XK_dead_diaeresis, XK_a, 0,
XK_aring, XK_dead_abovering, XK_a, 0,
XK_ccedilla, XK_dead_cedilla, XK_c, 0,
XK_egrave, XK_dead_grave, XK_e, 0,
XK_eacute, XK_dead_acute, XK_e, 0,
XK_ecircumflex, XK_dead_circumflex, XK_e, 0,
XK_ediaeresis, XK_dead_diaeresis, XK_e, 0,
XK_igrave, XK_dead_grave, XK_i, 0,
XK_iacute, XK_dead_acute, XK_i, 0,
XK_icircumflex, XK_dead_circumflex, XK_i, 0,
XK_idiaeresis, XK_dead_diaeresis, XK_i, 0,
XK_ntilde, XK_dead_tilde, XK_n, 0,
XK_ograve, XK_dead_grave, XK_o, 0,
XK_oacute, XK_dead_acute, XK_o, 0,
XK_ocircumflex, XK_dead_circumflex, XK_o, 0,
XK_otilde, XK_dead_tilde, XK_o, 0,
XK_odiaeresis, XK_dead_diaeresis, XK_o, 0,
XK_ugrave, XK_dead_grave, XK_u, 0,
XK_uacute, XK_dead_acute, XK_u, 0,
XK_ucircumflex, XK_dead_circumflex, XK_u, 0,
XK_udiaeresis, XK_dead_diaeresis, XK_u, 0,
XK_yacute, XK_dead_acute, XK_y, 0,
XK_ydiaeresis, XK_dead_diaeresis, XK_y, 0,
// Latin-2 (ISO 8859-2)
XK_Aogonek, XK_dead_ogonek, XK_A, 0,
XK_Lcaron, XK_dead_caron, XK_L, 0,
XK_Sacute, XK_dead_acute, XK_S, 0,
XK_Scaron, XK_dead_caron, XK_S, 0,
XK_Scedilla, XK_dead_cedilla, XK_S, 0,
XK_Tcaron, XK_dead_caron, XK_T, 0,
XK_Zacute, XK_dead_acute, XK_Z, 0,
XK_Zcaron, XK_dead_caron, XK_Z, 0,
XK_Zabovedot, XK_dead_abovedot, XK_Z, 0,
XK_aogonek, XK_dead_ogonek, XK_a, 0,
XK_lcaron, XK_dead_caron, XK_l, 0,
XK_sacute, XK_dead_acute, XK_s, 0,
XK_scaron, XK_dead_caron, XK_s, 0,
XK_scedilla, XK_dead_cedilla, XK_s, 0,
XK_tcaron, XK_dead_caron, XK_t, 0,
XK_zacute, XK_dead_acute, XK_z, 0,
XK_zcaron, XK_dead_caron, XK_z, 0,
XK_zabovedot, XK_dead_abovedot, XK_z, 0,
XK_Racute, XK_dead_acute, XK_R, 0,
XK_Abreve, XK_dead_breve, XK_A, 0,
XK_Lacute, XK_dead_acute, XK_L, 0,
XK_Cacute, XK_dead_acute, XK_C, 0,
XK_Ccaron, XK_dead_caron, XK_C, 0,
XK_Eogonek, XK_dead_ogonek, XK_E, 0,
XK_Ecaron, XK_dead_caron, XK_E, 0,
XK_Dcaron, XK_dead_caron, XK_D, 0,
XK_Nacute, XK_dead_acute, XK_N, 0,
XK_Ncaron, XK_dead_caron, XK_N, 0,
XK_Odoubleacute, XK_dead_doubleacute, XK_O, 0,
XK_Rcaron, XK_dead_caron, XK_R, 0,
XK_Uring, XK_dead_abovering, XK_U, 0,
XK_Udoubleacute, XK_dead_doubleacute, XK_U, 0,
XK_Tcedilla, XK_dead_cedilla, XK_T, 0,
XK_racute, XK_dead_acute, XK_r, 0,
XK_abreve, XK_dead_breve, XK_a, 0,
XK_lacute, XK_dead_acute, XK_l, 0,
XK_cacute, XK_dead_acute, XK_c, 0,
XK_ccaron, XK_dead_caron, XK_c, 0,
XK_eogonek, XK_dead_ogonek, XK_e, 0,
XK_ecaron, XK_dead_caron, XK_e, 0,
XK_dcaron, XK_dead_caron, XK_d, 0,
XK_nacute, XK_dead_acute, XK_n, 0,
XK_ncaron, XK_dead_caron, XK_n, 0,
XK_odoubleacute, XK_dead_doubleacute, XK_o, 0,
XK_rcaron, XK_dead_caron, XK_r, 0,
XK_uring, XK_dead_abovering, XK_u, 0,
XK_udoubleacute, XK_dead_doubleacute, XK_u, 0,
XK_tcedilla, XK_dead_cedilla, XK_t, 0,
// Latin-3 (ISO 8859-3)
XK_Hcircumflex, XK_dead_circumflex, XK_H, 0,
XK_Iabovedot, XK_dead_abovedot, XK_I, 0,
XK_Gbreve, XK_dead_breve, XK_G, 0,
XK_Jcircumflex, XK_dead_circumflex, XK_J, 0,
XK_hcircumflex, XK_dead_circumflex, XK_h, 0,
XK_gbreve, XK_dead_breve, XK_g, 0,
XK_jcircumflex, XK_dead_circumflex, XK_j, 0,
XK_Cabovedot, XK_dead_abovedot, XK_C, 0,
XK_Ccircumflex, XK_dead_circumflex, XK_C, 0,
XK_Gabovedot, XK_dead_abovedot, XK_G, 0,
XK_Gcircumflex, XK_dead_circumflex, XK_G, 0,
XK_Ubreve, XK_dead_breve, XK_U, 0,
XK_Scircumflex, XK_dead_circumflex, XK_S, 0,
XK_cabovedot, XK_dead_abovedot, XK_c, 0,
XK_ccircumflex, XK_dead_circumflex, XK_c, 0,
XK_gabovedot, XK_dead_abovedot, XK_g, 0,
XK_gcircumflex, XK_dead_circumflex, XK_g, 0,
XK_ubreve, XK_dead_breve, XK_u, 0,
XK_scircumflex, XK_dead_circumflex, XK_s, 0,
// Latin-4 (ISO 8859-4)
XK_scircumflex, XK_dead_circumflex, XK_s, 0,
XK_Rcedilla, XK_dead_cedilla, XK_R, 0,
XK_Itilde, XK_dead_tilde, XK_I, 0,
XK_Lcedilla, XK_dead_cedilla, XK_L, 0,
XK_Emacron, XK_dead_macron, XK_E, 0,
XK_Gcedilla, XK_dead_cedilla, XK_G, 0,
XK_rcedilla, XK_dead_cedilla, XK_r, 0,
XK_itilde, XK_dead_tilde, XK_i, 0,
XK_lcedilla, XK_dead_cedilla, XK_l, 0,
XK_emacron, XK_dead_macron, XK_e, 0,
XK_gcedilla, XK_dead_cedilla, XK_g, 0,
XK_Amacron, XK_dead_macron, XK_A, 0,
XK_Iogonek, XK_dead_ogonek, XK_I, 0,
XK_Eabovedot, XK_dead_abovedot, XK_E, 0,
XK_Imacron, XK_dead_macron, XK_I, 0,
XK_Ncedilla, XK_dead_cedilla, XK_N, 0,
XK_Omacron, XK_dead_macron, XK_O, 0,
XK_Kcedilla, XK_dead_cedilla, XK_K, 0,
XK_Uogonek, XK_dead_ogonek, XK_U, 0,
XK_Utilde, XK_dead_tilde, XK_U, 0,
XK_Umacron, XK_dead_macron, XK_U, 0,
XK_amacron, XK_dead_macron, XK_a, 0,
XK_iogonek, XK_dead_ogonek, XK_i, 0,
XK_eabovedot, XK_dead_abovedot, XK_e, 0,
XK_imacron, XK_dead_macron, XK_i, 0,
XK_ncedilla, XK_dead_cedilla, XK_n, 0,
XK_omacron, XK_dead_macron, XK_o, 0,
XK_kcedilla, XK_dead_cedilla, XK_k, 0,
XK_uogonek, XK_dead_ogonek, XK_u, 0,
XK_utilde, XK_dead_tilde, XK_u, 0,
XK_umacron, XK_dead_macron, XK_u, 0,
// Latin-8 (ISO 8859-14)
#if defined(XK_Babovedot)
XK_Babovedot, XK_dead_abovedot, XK_B, 0,
XK_babovedot, XK_dead_abovedot, XK_b, 0,
XK_Dabovedot, XK_dead_abovedot, XK_D, 0,
XK_Wgrave, XK_dead_grave, XK_W, 0,
XK_Wacute, XK_dead_acute, XK_W, 0,
XK_dabovedot, XK_dead_abovedot, XK_d, 0,
XK_Ygrave, XK_dead_grave, XK_Y, 0,
XK_Fabovedot, XK_dead_abovedot, XK_F, 0,
XK_fabovedot, XK_dead_abovedot, XK_f, 0,
XK_Mabovedot, XK_dead_abovedot, XK_M, 0,
XK_mabovedot, XK_dead_abovedot, XK_m, 0,
XK_Pabovedot, XK_dead_abovedot, XK_P, 0,
XK_wgrave, XK_dead_grave, XK_w, 0,
XK_pabovedot, XK_dead_abovedot, XK_p, 0,
XK_wacute, XK_dead_acute, XK_w, 0,
XK_Sabovedot, XK_dead_abovedot, XK_S, 0,
XK_ygrave, XK_dead_grave, XK_y, 0,
XK_Wdiaeresis, XK_dead_diaeresis, XK_W, 0,
XK_wdiaeresis, XK_dead_diaeresis, XK_w, 0,
XK_sabovedot, XK_dead_abovedot, XK_s, 0,
XK_Wcircumflex, XK_dead_circumflex, XK_W, 0,
XK_Tabovedot, XK_dead_abovedot, XK_T, 0,
XK_Ycircumflex, XK_dead_circumflex, XK_Y, 0,
XK_wcircumflex, XK_dead_circumflex, XK_w, 0,
XK_tabovedot, XK_dead_abovedot, XK_t, 0,
XK_ycircumflex, XK_dead_circumflex, XK_y, 0,
#endif
// Latin-9 (ISO 8859-15)
#if defined(XK_Ydiaeresis)
XK_Ydiaeresis, XK_dead_diaeresis, XK_Y, 0,
#endif
// end of table
0
};
// fill table if not yet initialized
if (s_decomposedKeySyms.empty()) {
const KeySym* scan = s_rawTable;
while (*scan != 0) {
// add an entry for this keysym
KeySyms& entry = s_decomposedKeySyms[*scan];
// add the decomposed keysyms for the keysym
while (*++scan != 0) {
entry.push_back(*scan);
}
// skip end of entry marker
++scan;
}
}
return s_decomposedKeySyms;
}
//
// CXWindowsSecondaryScreen::KeyMapping
//
CXWindowsSecondaryScreen::KeyMapping::KeyMapping()
{
m_keycode[0] = 0;
m_keycode[1] = 0;
m_keycode[2] = 0;
m_keycode[3] = 0;
}