barrier/client/CXWindowsSecondaryScreen.cpp

985 lines
26 KiB
C++

#include "CXWindowsSecondaryScreen.h"
#include "CXWindowsClipboard.h"
#include "CXWindowsUtil.h"
#include "CClient.h"
#include "CThread.h"
#include "CLog.h"
#include <assert.h>
#include <X11/X.h>
#include <X11/Xutil.h>
#define XK_MISCELLANY
#define XK_XKB_KEYS
#include <X11/keysymdef.h>
#include <X11/extensions/XTest.h>
//
// CXWindowsSecondaryScreen
//
CXWindowsSecondaryScreen::CXWindowsSecondaryScreen() :
m_client(NULL),
m_window(None)
{
// do nothing
}
CXWindowsSecondaryScreen::~CXWindowsSecondaryScreen()
{
assert(m_window == None);
}
void CXWindowsSecondaryScreen::run()
{
assert(m_window != None);
for (;;) {
// wait for and get the next event
XEvent xevent;
if (!getEvent(&xevent)) {
break;
}
// handle event
switch (xevent.type) {
case MappingNotify: {
// keyboard mapping changed
CDisplayLock display(this);
XRefreshKeyboardMapping(&xevent.xmapping);
updateKeys(display);
updateKeycodeMap(display);
updateModifierMap(display);
updateModifiers(display);
break;
}
case LeaveNotify: {
// mouse moved out of hider window somehow. hide the window.
assert(m_window != None);
CDisplayLock display(this);
XUnmapWindow(display, m_window);
break;
}
}
}
}
void CXWindowsSecondaryScreen::stop()
{
doStop();
}
void CXWindowsSecondaryScreen::open(CClient* client)
{
assert(m_client == NULL);
assert(client != NULL);
// set the client
m_client = client;
// open the display
openDisplay();
{
// verify the availability of the XTest extension
CDisplayLock display(this);
int majorOpcode, firstEvent, firstError;
if (!XQueryExtension(display, XTestExtensionName,
&majorOpcode, &firstEvent, &firstError))
throw int(6); // FIXME -- make exception for this
// update key state
updateKeys(display);
updateKeycodeMap(display);
updateModifierMap(display);
updateModifiers(display);
}
// check for peculiarities
// FIXME -- may have to get these from some database
m_numLockHalfDuplex = false;
m_capsLockHalfDuplex = false;
// m_numLockHalfDuplex = true;
// m_capsLockHalfDuplex = true;
// assume primary has all clipboards
for (ClipboardID id = 0; id < kClipboardEnd; ++id)
grabClipboard(id);
}
void CXWindowsSecondaryScreen::close()
{
assert(m_client != NULL);
// close the display
closeDisplay();
// done with client
m_client = NULL;
}
void CXWindowsSecondaryScreen::enter(
SInt32 x, SInt32 y, KeyModifierMask mask)
{
assert(m_window != None);
CDisplayLock display(this);
// warp to requested location
XTestFakeMotionEvent(display, getScreen(), x, y, CurrentTime);
XSync(display, False);
// show cursor
XUnmapWindow(display, m_window);
// update our keyboard state to reflect the local state
updateKeys(display);
updateModifiers(display);
// toggle modifiers that don't match the desired state
unsigned int xMask = maskToX(mask);
if ((xMask & m_capsLockMask) != (m_mask & m_capsLockMask)) {
toggleKey(display, XK_Caps_Lock, m_capsLockMask);
}
if ((xMask & m_numLockMask) != (m_mask & m_numLockMask)) {
toggleKey(display, XK_Num_Lock, m_numLockMask);
}
if ((xMask & m_scrollLockMask) != (m_mask & m_scrollLockMask)) {
toggleKey(display, XK_Scroll_Lock, m_scrollLockMask);
}
XSync(display, False);
}
void CXWindowsSecondaryScreen::leave()
{
CDisplayLock display(this);
leaveNoLock(display);
}
void CXWindowsSecondaryScreen::keyDown(
KeyID key, KeyModifierMask mask)
{
Keystrokes keys;
KeyCode keycode;
// get the sequence of keys to simulate key press and the final
// modifier state.
m_mask = mapKey(keys, keycode, key, mask, kPress);
if (keys.empty())
return;
// generate key events
doKeystrokes(keys, 1);
// note that key is now down
m_keys[keycode] = true;
}
void CXWindowsSecondaryScreen::keyRepeat(
KeyID key, KeyModifierMask mask, SInt32 count)
{
Keystrokes keys;
KeyCode keycode;
// get the sequence of keys to simulate key repeat and the final
// modifier state.
m_mask = mapKey(keys, keycode, key, mask, kRepeat);
if (keys.empty())
return;
// generate key events
doKeystrokes(keys, count);
}
void CXWindowsSecondaryScreen::keyUp(
KeyID key, KeyModifierMask mask)
{
Keystrokes keys;
KeyCode keycode;
// get the sequence of keys to simulate key release and the final
// modifier state.
m_mask = mapKey(keys, keycode, key, mask, kRelease);
if (keys.empty())
return;
// generate key events
doKeystrokes(keys, 1);
// note that key is now up
m_keys[keycode] = false;
}
void CXWindowsSecondaryScreen::mouseDown(ButtonID button)
{
CDisplayLock display(this);
XTestFakeButtonEvent(display, mapButton(button), True, CurrentTime);
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseUp(ButtonID button)
{
CDisplayLock display(this);
XTestFakeButtonEvent(display, mapButton(button), False, CurrentTime);
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseMove(SInt32 x, SInt32 y)
{
CDisplayLock display(this);
XTestFakeMotionEvent(display, getScreen(), x, y, CurrentTime);
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseWheel(SInt32 delta)
{
// choose button depending on rotation direction
const unsigned int button = (delta >= 0) ? 4 : 5;
// now use absolute value of delta
if (delta < 0) {
delta = -delta;
}
// send as many clicks as necessary
CDisplayLock display(this);
for (; delta >= 120; delta -= 120) {
XTestFakeButtonEvent(display, button, True, CurrentTime);
XTestFakeButtonEvent(display, button, False, CurrentTime);
}
XSync(display, False);
}
void CXWindowsSecondaryScreen::setClipboard(
ClipboardID id, const IClipboard* clipboard)
{
setDisplayClipboard(id, clipboard);
}
void CXWindowsSecondaryScreen::grabClipboard(ClipboardID id)
{
setDisplayClipboard(id, NULL);
}
void CXWindowsSecondaryScreen::getMousePos(
SInt32* x, SInt32* y) const
{
CDisplayLock display(this);
int xTmp, yTmp, dummy;
unsigned int dummyMask;
Window dummyWindow;
XQueryPointer(display, getRoot(), &dummyWindow, &dummyWindow,
&xTmp, &yTmp, &dummy, &dummy, &dummyMask);
*x = xTmp;
*y = yTmp;
}
void CXWindowsSecondaryScreen::getSize(
SInt32* width, SInt32* height) const
{
getScreenSize(width, height);
}
SInt32 CXWindowsSecondaryScreen::getJumpZoneSize() const
{
return 0;
}
void CXWindowsSecondaryScreen::getClipboard(
ClipboardID id, IClipboard* clipboard) const
{
getDisplayClipboard(id, clipboard);
}
void CXWindowsSecondaryScreen::onOpenDisplay()
{
assert(m_window == None);
CDisplayLock display(this);
// create the cursor hiding window. this window is used to hide the
// cursor when it's not on the screen. the window is hidden as soon
// as the cursor enters the screen or the display's real cursor is
// moved.
XSetWindowAttributes attr;
attr.event_mask = LeaveWindowMask;
attr.do_not_propagate_mask = 0;
attr.override_redirect = True;
attr.cursor = createBlankCursor();
m_window = XCreateWindow(display, getRoot(), 0, 0, 1, 1, 0, 0,
InputOnly, CopyFromParent,
CWDontPropagate | CWEventMask |
CWOverrideRedirect | CWCursor,
&attr);
// become impervious to server grabs
XTestGrabControl(display, True);
// hide the cursor
leaveNoLock(display);
}
CXWindowsClipboard* CXWindowsSecondaryScreen::createClipboard(
ClipboardID id)
{
CDisplayLock display(this);
return new CXWindowsClipboard(display, m_window, id);
}
void CXWindowsSecondaryScreen::onCloseDisplay()
{
assert(m_window != None);
// no longer impervious to server grabs
CDisplayLock display(this);
XTestGrabControl(display, False);
// destroy window
XDestroyWindow(display, m_window);
m_window = None;
}
void CXWindowsSecondaryScreen::onLostClipboard(
ClipboardID id)
{
// tell client that the clipboard was grabbed locally
m_client->onClipboardChanged(id);
}
long CXWindowsSecondaryScreen::getEventMask(Window w) const
{
if (w == m_window)
return LeaveWindowMask;
else
return NoEventMask;
}
void CXWindowsSecondaryScreen::leaveNoLock(Display* display)
{
assert(display != NULL);
assert(m_window != None);
// move hider window under the mouse (rather than moving the mouse
// somewhere else on the screen)
int x, y, dummy;
unsigned int dummyMask;
Window dummyWindow;
XQueryPointer(display, getRoot(), &dummyWindow, &dummyWindow,
&x, &y, &dummy, &dummy, &dummyMask);
XMoveWindow(display, m_window, x, y);
// raise and show the hider window
XMapRaised(display, m_window);
// hide cursor by moving it into the hider window
XWarpPointer(display, None, m_window, 0, 0, 0, 0, 0, 0);
}
unsigned int CXWindowsSecondaryScreen::mapButton(
ButtonID id) const
{
// FIXME -- should use button mapping?
return static_cast<unsigned int>(id);
}
KeyModifierMask CXWindowsSecondaryScreen::mapKey(
Keystrokes& keys,
KeyCode& keycode,
KeyID id, KeyModifierMask mask,
EKeyAction action) const
{
// note -- must have display locked on entry
// the system translates key events into characters depending
// on the modifier key state at the time of the event. to
// generate the right keysym we need to set the modifier key
// states appropriately.
//
// the mask passed by the caller is the desired mask. however,
// there may not be a keycode mapping to generate the desired
// keysym with that mask. we override the bits in the mask
// that cannot be accomodated.
// note if the key is the caps lock and it's "half-duplex"
const bool isHalfDuplex = ((id == XK_Caps_Lock && m_capsLockHalfDuplex) ||
(id == XK_Num_Lock && m_numLockHalfDuplex));
// ignore releases and repeats for half-duplex keys
if (isHalfDuplex && action != kPress) {
return m_mask;
}
// lookup the a keycode for this key id. also return the
// key modifier mask required.
unsigned int outMask;
if (!findKeyCode(keycode, outMask, id, maskToX(mask))) {
// we cannot generate the desired keysym because no key
// maps to that keysym. just return the current mask.
log((CLOG_DEBUG2 "no keycode for keysym %d modifiers 0x%04x", id, mask));
return m_mask;
}
log((CLOG_DEBUG2 "keysym %d -> keycode %d modifiers 0x%04x", id, keycode, outMask));
// if we cannot match the modifier mask then don't return any
// keys and just return the current mask.
if ((outMask & m_modifierMask) != outMask) {
log((CLOG_DEBUG2 "cannot match modifiers to mask 0x%04x", m_modifierMask));
return m_mask;
}
// note if the key is a modifier
ModifierMap::const_iterator index = m_keycodeToModifier.find(keycode);
const bool isModifier = (index != m_keycodeToModifier.end());
// add the key events required to get to the modifier state
// necessary to generate an event yielding id. also save the
// key events required to restore the state. if the key is
// a modifier key then skip this because modifiers should not
// modify modifiers.
Keystrokes undo;
Keystroke keystroke;
if (outMask != m_mask && !isModifier) {
for (unsigned int i = 0; i < 8; ++i) {
unsigned int bit = (1 << i);
if ((outMask & bit) != (m_mask & bit)) {
// get list of keycodes for the modifier. there must
// be at least one.
const KeyCode* modifierKeys =
&m_modifierToKeycode[i * m_keysPerModifier];
KeyCode modifierKey = modifierKeys[0];
if (modifierKey == 0)
modifierKey = modifierKeys[1];
assert(modifierKeys[0] != 0);
if (modifierKey != 0 && (outMask & bit) != 0) {
// modifier is not active but should be. if the
// modifier is a toggle then toggle it on with a
// press/release, otherwise activate it with a
// press. use the first keycode for the modifier.
log((CLOG_DEBUG2 "modifier 0x%04x is not active", bit));
keystroke.m_keycode = modifierKey;
keystroke.m_press = True;
keystroke.m_repeat = false;
keys.push_back(keystroke);
if ((bit & m_toggleModifierMask) != 0) {
log((CLOG_DEBUG2 "modifier 0x%04x is a toggle", bit));
if ((bit == m_capsLockMask && m_capsLockHalfDuplex) ||
(bit == m_numLockMask && m_numLockHalfDuplex)) {
keystroke.m_press = False;
undo.push_back(keystroke);
}
else {
keystroke.m_press = False;
keys.push_back(keystroke);
undo.push_back(keystroke);
keystroke.m_press = True;
undo.push_back(keystroke);
}
}
else {
keystroke.m_press = False;
undo.push_back(keystroke);
}
}
else if ((outMask & bit) == 0) {
// modifier is active but should not be. if the
// modifier is a toggle then toggle it off with a
// press/release, otherwise deactivate it with a
// release. we must check each keycode for the
// modifier if not a toggle.
log((CLOG_DEBUG2 "modifier 0x%04x is active", bit));
if ((bit & m_toggleModifierMask) != 0) {
if (modifierKey != 0) {
log((CLOG_DEBUG2 "modifier 0x%04x is a toggle", bit));
keystroke.m_keycode = modifierKey;
keystroke.m_repeat = false;
if ((bit == m_capsLockMask &&
m_capsLockHalfDuplex) ||
(bit == m_numLockMask &&
m_numLockHalfDuplex)) {
keystroke.m_press = False;
keys.push_back(keystroke);
keystroke.m_press = True;
undo.push_back(keystroke);
}
else {
keystroke.m_press = True;
keys.push_back(keystroke);
keystroke.m_press = False;
keys.push_back(keystroke);
undo.push_back(keystroke);
keystroke.m_press = True;
undo.push_back(keystroke);
}
}
}
else {
for (unsigned int j = 0; j < m_keysPerModifier; ++j) {
const KeyCode key = modifierKeys[j];
if (key != 0 && m_keys[key]) {
keystroke.m_keycode = key;
keystroke.m_press = False;
keystroke.m_repeat = false;
keys.push_back(keystroke);
keystroke.m_press = True;
undo.push_back(keystroke);
}
}
}
}
}
}
}
// note if the press of a half-duplex key should be treated as a release
if (isHalfDuplex && (m_mask & (1 << index->second)) != 0) {
action = kRelease;
}
// add the key event
keystroke.m_keycode = keycode;
switch (action) {
case kPress:
keystroke.m_press = True;
keystroke.m_repeat = false;
keys.push_back(keystroke);
break;
case kRelease:
keystroke.m_press = False;
keystroke.m_repeat = false;
keys.push_back(keystroke);
break;
case kRepeat:
keystroke.m_press = False;
keystroke.m_repeat = true;
keys.push_back(keystroke);
keystroke.m_press = True;
keys.push_back(keystroke);
break;
}
// add key events to restore the modifier state. apply events in
// the reverse order that they're stored in undo.
while (!undo.empty()) {
keys.push_back(undo.back());
undo.pop_back();
}
// if the key is a modifier key then compute the modifier map after
// this key is pressed or released. if repeating then ignore.
mask = m_mask;
if (isModifier && action != kRepeat) {
// get modifier
const unsigned int modifierBit = (1 << index->second);
// toggle keys modify the state on release. other keys set the
// bit on press and clear the bit on release. if half-duplex
// then toggle each time we get here.
if ((modifierBit & m_toggleModifierMask) != 0) {
if (isHalfDuplex || action == kRelease) {
mask ^= modifierBit;
}
}
else if (action == kPress) {
mask |= modifierBit;
}
else {
// can't reset bit until all keys that set it are released.
// scan those keys to see if any (except keycode) are pressed.
bool down = false;
const KeyCode* modifierKeys = &m_modifierToKeycode[
index->second * m_keysPerModifier];
for (unsigned int j = 0; !down && j < m_keysPerModifier; ++j) {
if (modifierKeys[j] != 0 && m_keys[modifierKeys[j]])
down = true;
}
if (!down)
mask &= ~modifierBit;
}
}
return mask;
}
bool CXWindowsSecondaryScreen::findKeyCode(
KeyCode& keycode,
unsigned int& maskOut,
KeyID id,
unsigned int maskIn) const
{
// if XK_Tab is requested with shift active then try XK_ISO_Left_Tab
// instead. if that doesn't work, we'll fall back to XK_Tab with
// shift active. this is to handle primary screens that don't map
// XK_ISO_Left_Tab sending events to secondary screens that do.
if (id == XK_Tab && (maskIn & ShiftMask) != 0) {
id = XK_ISO_Left_Tab;
maskIn &= ~ShiftMask;
}
// find a keycode to generate id. XKeysymToKeycode() almost does
// what we need but won't tell us which index to use with the
// keycode. return false if there's no keycode to generate id.
KeyCodeMap::const_iterator index = m_keycodeMap.find(id);
if (index == m_keycodeMap.end()) {
// try backup keysym for certain keys (particularly the numpad
// keys since most laptops don't have a separate numpad and the
// numpad overlaying the main keyboard may not have movement
// key bindings).
switch (id) {
case XK_KP_Home:
id = XK_Home;
break;
case XK_KP_Left:
id = XK_Left;
break;
case XK_KP_Up:
id = XK_Up;
break;
case XK_KP_Right:
id = XK_Right;
break;
case XK_KP_Down:
id = XK_Down;
break;
case XK_KP_Prior:
id = XK_Prior;
break;
case XK_KP_Next:
id = XK_Next;
break;
case XK_KP_End:
id = XK_End;
break;
case XK_KP_Insert:
id = XK_Insert;
break;
case XK_KP_Delete:
id = XK_Delete;
break;
case XK_ISO_Left_Tab:
id = XK_Tab;
maskIn |= ShiftMask;
break;
default:
return false;
}
index = m_keycodeMap.find(id);
if (index == m_keycodeMap.end()) {
return false;
}
}
// save the keycode
keycode = index->second.m_keycode;
// compute output mask. that's the set of modifiers that need to
// be enabled when the keycode event is encountered in order to
// generate the id keysym and match maskIn. it's possible that
// maskIn wants, say, a shift key to be down but that would make
// it impossible to generate the keysym. in that case we must
// override maskIn. this is complicated by caps/shift-lock and
// num-lock.
maskOut = (maskIn & ~index->second.m_keyMaskMask);
log((CLOG_DEBUG2 "maskIn(0x%04x) & ~maskMask(0x%04x) -> 0x%04x", maskIn, index->second.m_keyMaskMask, maskOut));
if (IsKeypadKey(id) || IsPrivateKeypadKey(id)) {
if ((m_mask & m_numLockMask) != 0) {
maskOut &= ~index->second.m_keyMask;
maskOut |= m_numLockMask;
log((CLOG_DEBUG2 "keypad key: & ~mask(0x%04x) | numLockMask(0x%04x) -> 0x%04x", index->second.m_keyMask, m_numLockMask, maskOut));
}
else {
maskOut |= index->second.m_keyMask;
maskOut &= ~m_numLockMask;
log((CLOG_DEBUG2 "keypad key: | mask(0x%04x) & ~numLockMask(0x%04x) -> 0x%04x", index->second.m_keyMask, m_numLockMask, maskOut));
}
}
else {
unsigned int maskShift = (index->second.m_keyMask & ShiftMask);
log((CLOG_DEBUG2 "maskShift = 0x%04x", maskShift));
if (maskShift != 0 && (m_mask & m_capsLockMask) != 0) {
// shift and capsLock cancel out for keysyms subject to
// case conversion but not for keys with shifted
// characters that are not case conversions. see if
// case conversion is necessary.
KeySym lKey, uKey;
XConvertCase(id, &lKey, &uKey);
if (lKey != uKey) {
log((CLOG_DEBUG2 "case convertable, shift && capsLock -> caps lock"));
maskShift = m_capsLockMask;
}
else {
log((CLOG_DEBUG2 "case unconvertable, shift && capsLock -> shift, caps lock"));
maskShift |= m_capsLockMask;
}
}
log((CLOG_DEBUG2 "maskShift = 0x%04x", maskShift));
maskOut |= maskShift;
maskOut |= (index->second.m_keyMask & ~(ShiftMask | LockMask));
log((CLOG_DEBUG2 "| maskShift(0x%04x) | other (0x%04x) -> 0x%04x", maskShift, (index->second.m_keyMask & ~(ShiftMask | LockMask)), maskOut));
}
return true;
}
void CXWindowsSecondaryScreen::doKeystrokes(
const Keystrokes& keys, SInt32 count)
{
// do nothing if no keys or no repeats
if (count < 1 || keys.empty())
return;
// lock display
CDisplayLock display(this);
// generate key events
for (Keystrokes::const_iterator k = keys.begin(); k != keys.end(); ) {
if (k->m_repeat) {
// repeat from here up to but not including the next key
// with m_repeat == false count times.
Keystrokes::const_iterator start = k;
for (; count > 0; --count) {
// send repeating events
for (k = start; k != keys.end() && k->m_repeat; ++k) {
XTestFakeKeyEvent(display,
k->m_keycode, k->m_press, CurrentTime);
}
}
// note -- k is now on the first non-repeat key after the
// repeat keys, exactly where we'd like to continue from.
}
else {
// send event
XTestFakeKeyEvent(display, k->m_keycode, k->m_press, CurrentTime);
// next key
++k;
}
}
// update
XSync(display, False);
}
unsigned int CXWindowsSecondaryScreen::maskToX(
KeyModifierMask inMask) const
{
// FIXME -- should be configurable. not using Mod3Mask.
unsigned int outMask = 0;
if (inMask & KeyModifierShift)
outMask |= ShiftMask;
if (inMask & KeyModifierControl)
outMask |= ControlMask;
if (inMask & KeyModifierAlt)
outMask |= Mod1Mask;
if (inMask & KeyModifierMeta)
outMask |= Mod4Mask;
if (inMask & KeyModifierCapsLock)
outMask |= m_capsLockMask;
if (inMask & KeyModifierNumLock)
outMask |= m_numLockMask;
if (inMask & KeyModifierScrollLock)
outMask |= m_scrollLockMask;
return outMask;
}
void CXWindowsSecondaryScreen::updateKeys(Display* display)
{
// ask server which keys are pressed
char keys[32];
XQueryKeymap(display, keys);
// transfer to our state
for (unsigned int i = 0, j = 0; i < 32; j += 8, ++i) {
m_keys[j + 0] = ((keys[i] & 0x01) != 0);
m_keys[j + 1] = ((keys[i] & 0x02) != 0);
m_keys[j + 2] = ((keys[i] & 0x04) != 0);
m_keys[j + 3] = ((keys[i] & 0x08) != 0);
m_keys[j + 4] = ((keys[i] & 0x10) != 0);
m_keys[j + 5] = ((keys[i] & 0x20) != 0);
m_keys[j + 6] = ((keys[i] & 0x40) != 0);
m_keys[j + 7] = ((keys[i] & 0x80) != 0);
}
}
void CXWindowsSecondaryScreen::updateModifiers(
Display*)
{
// update active modifier mask
m_mask = 0;
for (unsigned int i = 0; i < 8; ++i) {
const unsigned int bit = (1 << i);
if ((bit & m_toggleModifierMask) == 0) {
for (unsigned int j = 0; j < m_keysPerModifier; ++j) {
if (m_keys[m_modifierToKeycode[i * m_keysPerModifier + j]])
m_mask |= bit;
}
}
else {
// FIXME -- not sure how to check current lock states
}
}
}
void CXWindowsSecondaryScreen::updateKeycodeMap(
Display* display)
{
// get the number of keycodes
int minKeycode, maxKeycode;
XDisplayKeycodes(display, &minKeycode, &maxKeycode);
const int numKeycodes = maxKeycode - minKeycode + 1;
// get the keyboard mapping for all keys
int keysymsPerKeycode;
KeySym* keysyms = XGetKeyboardMapping(display,
minKeycode, numKeycodes,
&keysymsPerKeycode);
// restrict keysyms per keycode to 2 because, frankly, i have no
// idea how/what modifiers are used to access keysyms beyond the
// first 2.
int numKeysyms = 2; // keysymsPerKeycode
// initialize
KeyCodeMask entry;
m_keycodeMap.clear();
// insert keys
for (int i = 0; i < numKeycodes; ++i) {
// how many keysyms for this keycode?
int n;
for (n = 0; n < numKeysyms; ++n) {
if (keysyms[i * keysymsPerKeycode + n] == NoSymbol) {
break;
}
}
// move to next keycode if there are no keysyms
if (n == 0) {
continue;
}
// set the mask of modifiers that this keycode uses
entry.m_keyMaskMask = (n == 1) ? 0 : (ShiftMask | LockMask);
// add entries for this keycode
entry.m_keycode = static_cast<KeyCode>(minKeycode + i);
for (int j = 0; j < numKeysyms; ++j) {
entry.m_keyMask = (j == 0) ? 0 : ShiftMask;
m_keycodeMap.insert(std::make_pair(keysyms[i *
keysymsPerKeycode + j], entry));
}
}
// clean up
XFree(keysyms);
}
void CXWindowsSecondaryScreen::updateModifierMap(
Display* display)
{
// get modifier map from server
XModifierKeymap* keymap = XGetModifierMapping(display);
// initialize
m_modifierMask = 0;
m_toggleModifierMask = 0;
m_numLockMask = 0;
m_capsLockMask = 0;
m_scrollLockMask = 0;
m_keysPerModifier = keymap->max_keypermod;
m_modifierToKeycode.clear();
m_modifierToKeycode.resize(8 * m_keysPerModifier);
// set keycodes and masks
for (unsigned int i = 0; i < 8; ++i) {
const unsigned int bit = (1 << i);
for (unsigned int j = 0; j < m_keysPerModifier; ++j) {
KeyCode keycode = keymap->modifiermap[i * m_keysPerModifier + j];
// save in modifier to keycode
m_modifierToKeycode[i * m_keysPerModifier + j] = keycode;
// save in keycode to modifier
m_keycodeToModifier.insert(std::make_pair(keycode, i));
// modifier is enabled if keycode isn't 0
if (keycode != 0)
m_modifierMask |= bit;
// modifier is a toggle if the keysym is a toggle modifier
const KeySym keysym = XKeycodeToKeysym(display, keycode, 0);
if (isToggleKeysym(keysym)) {
m_toggleModifierMask |= bit;
// note num/caps-lock
if (keysym == XK_Num_Lock) {
m_numLockMask |= bit;
}
else if (keysym == XK_Caps_Lock) {
m_capsLockMask |= bit;
}
else if (keysym == XK_Scroll_Lock) {
m_scrollLockMask |= bit;
}
}
}
}
XFreeModifiermap(keymap);
}
void CXWindowsSecondaryScreen::toggleKey(
Display* display,
KeySym keysym, unsigned int mask)
{
// lookup the keycode
KeyCodeMap::const_iterator index = m_keycodeMap.find(keysym);
if (index == m_keycodeMap.end())
return;
KeyCode keycode = index->second.m_keycode;
// toggle the key
if ((keysym == XK_Caps_Lock && m_capsLockHalfDuplex) ||
(keysym == XK_Num_Lock && m_numLockHalfDuplex)) {
// "half-duplex" toggle
XTestFakeKeyEvent(display, keycode, (m_mask & mask) == 0, CurrentTime);
}
else {
// normal toggle
XTestFakeKeyEvent(display, keycode, True, CurrentTime);
XTestFakeKeyEvent(display, keycode, False, CurrentTime);
}
// toggle shadow state
m_mask ^= mask;
}
bool CXWindowsSecondaryScreen::isToggleKeysym(KeySym key)
{
switch (key) {
case XK_Caps_Lock:
case XK_Shift_Lock:
case XK_Num_Lock:
case XK_Scroll_Lock:
return true;
default:
return false;
}
}