barrier/tools/gtest/include/gtest/internal/gtest-param-util.h

620 lines
24 KiB
C++

// Copyright 2008 Google Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: vladl@google.com (Vlad Losev)
// Type and function utilities for implementing parameterized tests.
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_
#include <iterator>
#include <utility>
#include <vector>
// scripts/fuse_gtest.py depends on gtest's own header being #included
// *unconditionally*. Therefore these #includes cannot be moved
// inside #if GTEST_HAS_PARAM_TEST.
#include <gtest/internal/gtest-internal.h>
#include <gtest/internal/gtest-linked_ptr.h>
#include <gtest/internal/gtest-port.h>
#if GTEST_HAS_PARAM_TEST
namespace testing {
namespace internal {
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// Outputs a message explaining invalid registration of different
// fixture class for the same test case. This may happen when
// TEST_P macro is used to define two tests with the same name
// but in different namespaces.
GTEST_API_ void ReportInvalidTestCaseType(const char* test_case_name,
const char* file, int line);
template <typename> class ParamGeneratorInterface;
template <typename> class ParamGenerator;
// Interface for iterating over elements provided by an implementation
// of ParamGeneratorInterface<T>.
template <typename T>
class ParamIteratorInterface {
public:
virtual ~ParamIteratorInterface() {}
// A pointer to the base generator instance.
// Used only for the purposes of iterator comparison
// to make sure that two iterators belong to the same generator.
virtual const ParamGeneratorInterface<T>* BaseGenerator() const = 0;
// Advances iterator to point to the next element
// provided by the generator. The caller is responsible
// for not calling Advance() on an iterator equal to
// BaseGenerator()->End().
virtual void Advance() = 0;
// Clones the iterator object. Used for implementing copy semantics
// of ParamIterator<T>.
virtual ParamIteratorInterface* Clone() const = 0;
// Dereferences the current iterator and provides (read-only) access
// to the pointed value. It is the caller's responsibility not to call
// Current() on an iterator equal to BaseGenerator()->End().
// Used for implementing ParamGenerator<T>::operator*().
virtual const T* Current() const = 0;
// Determines whether the given iterator and other point to the same
// element in the sequence generated by the generator.
// Used for implementing ParamGenerator<T>::operator==().
virtual bool Equals(const ParamIteratorInterface& other) const = 0;
};
// Class iterating over elements provided by an implementation of
// ParamGeneratorInterface<T>. It wraps ParamIteratorInterface<T>
// and implements the const forward iterator concept.
template <typename T>
class ParamIterator {
public:
typedef T value_type;
typedef const T& reference;
typedef ptrdiff_t difference_type;
// ParamIterator assumes ownership of the impl_ pointer.
ParamIterator(const ParamIterator& other) : impl_(other.impl_->Clone()) {}
ParamIterator& operator=(const ParamIterator& other) {
if (this != &other)
impl_.reset(other.impl_->Clone());
return *this;
}
const T& operator*() const { return *impl_->Current(); }
const T* operator->() const { return impl_->Current(); }
// Prefix version of operator++.
ParamIterator& operator++() {
impl_->Advance();
return *this;
}
// Postfix version of operator++.
ParamIterator operator++(int /*unused*/) {
ParamIteratorInterface<T>* clone = impl_->Clone();
impl_->Advance();
return ParamIterator(clone);
}
bool operator==(const ParamIterator& other) const {
return impl_.get() == other.impl_.get() || impl_->Equals(*other.impl_);
}
bool operator!=(const ParamIterator& other) const {
return !(*this == other);
}
private:
friend class ParamGenerator<T>;
explicit ParamIterator(ParamIteratorInterface<T>* impl) : impl_(impl) {}
scoped_ptr<ParamIteratorInterface<T> > impl_;
};
// ParamGeneratorInterface<T> is the binary interface to access generators
// defined in other translation units.
template <typename T>
class ParamGeneratorInterface {
public:
typedef T ParamType;
virtual ~ParamGeneratorInterface() {}
// Generator interface definition
virtual ParamIteratorInterface<T>* Begin() const = 0;
virtual ParamIteratorInterface<T>* End() const = 0;
};
// Wraps ParamGeneratorInterface<T> and provides general generator syntax
// compatible with the STL Container concept.
// This class implements copy initialization semantics and the contained
// ParamGeneratorInterface<T> instance is shared among all copies
// of the original object. This is possible because that instance is immutable.
template<typename T>
class ParamGenerator {
public:
typedef ParamIterator<T> iterator;
explicit ParamGenerator(ParamGeneratorInterface<T>* impl) : impl_(impl) {}
ParamGenerator(const ParamGenerator& other) : impl_(other.impl_) {}
ParamGenerator& operator=(const ParamGenerator& other) {
impl_ = other.impl_;
return *this;
}
iterator begin() const { return iterator(impl_->Begin()); }
iterator end() const { return iterator(impl_->End()); }
private:
::testing::internal::linked_ptr<const ParamGeneratorInterface<T> > impl_;
};
// Generates values from a range of two comparable values. Can be used to
// generate sequences of user-defined types that implement operator+() and
// operator<().
// This class is used in the Range() function.
template <typename T, typename IncrementT>
class RangeGenerator : public ParamGeneratorInterface<T> {
public:
RangeGenerator(T begin, T end, IncrementT step)
: begin_(begin), end_(end),
step_(step), end_index_(CalculateEndIndex(begin, end, step)) {}
virtual ~RangeGenerator() {}
virtual ParamIteratorInterface<T>* Begin() const {
return new Iterator(this, begin_, 0, step_);
}
virtual ParamIteratorInterface<T>* End() const {
return new Iterator(this, end_, end_index_, step_);
}
private:
class Iterator : public ParamIteratorInterface<T> {
public:
Iterator(const ParamGeneratorInterface<T>* base, T value, int index,
IncrementT step)
: base_(base), value_(value), index_(index), step_(step) {}
virtual ~Iterator() {}
virtual const ParamGeneratorInterface<T>* BaseGenerator() const {
return base_;
}
virtual void Advance() {
value_ = value_ + step_;
index_++;
}
virtual ParamIteratorInterface<T>* Clone() const {
return new Iterator(*this);
}
virtual const T* Current() const { return &value_; }
virtual bool Equals(const ParamIteratorInterface<T>& other) const {
// Having the same base generator guarantees that the other
// iterator is of the same type and we can downcast.
GTEST_CHECK_(BaseGenerator() == other.BaseGenerator())
<< "The program attempted to compare iterators "
<< "from different generators." << std::endl;
const int other_index =
CheckedDowncastToActualType<const Iterator>(&other)->index_;
return index_ == other_index;
}
private:
Iterator(const Iterator& other)
: ParamIteratorInterface<T>(),
base_(other.base_), value_(other.value_), index_(other.index_),
step_(other.step_) {}
// No implementation - assignment is unsupported.
void operator=(const Iterator& other);
const ParamGeneratorInterface<T>* const base_;
T value_;
int index_;
const IncrementT step_;
}; // class RangeGenerator::Iterator
static int CalculateEndIndex(const T& begin,
const T& end,
const IncrementT& step) {
int end_index = 0;
for (T i = begin; i < end; i = i + step)
end_index++;
return end_index;
}
// No implementation - assignment is unsupported.
void operator=(const RangeGenerator& other);
const T begin_;
const T end_;
const IncrementT step_;
// The index for the end() iterator. All the elements in the generated
// sequence are indexed (0-based) to aid iterator comparison.
const int end_index_;
}; // class RangeGenerator
// Generates values from a pair of STL-style iterators. Used in the
// ValuesIn() function. The elements are copied from the source range
// since the source can be located on the stack, and the generator
// is likely to persist beyond that stack frame.
template <typename T>
class ValuesInIteratorRangeGenerator : public ParamGeneratorInterface<T> {
public:
template <typename ForwardIterator>
ValuesInIteratorRangeGenerator(ForwardIterator begin, ForwardIterator end)
: container_(begin, end) {}
virtual ~ValuesInIteratorRangeGenerator() {}
virtual ParamIteratorInterface<T>* Begin() const {
return new Iterator(this, container_.begin());
}
virtual ParamIteratorInterface<T>* End() const {
return new Iterator(this, container_.end());
}
private:
typedef typename ::std::vector<T> ContainerType;
class Iterator : public ParamIteratorInterface<T> {
public:
Iterator(const ParamGeneratorInterface<T>* base,
typename ContainerType::const_iterator iterator)
: base_(base), iterator_(iterator) {}
virtual ~Iterator() {}
virtual const ParamGeneratorInterface<T>* BaseGenerator() const {
return base_;
}
virtual void Advance() {
++iterator_;
value_.reset();
}
virtual ParamIteratorInterface<T>* Clone() const {
return new Iterator(*this);
}
// We need to use cached value referenced by iterator_ because *iterator_
// can return a temporary object (and of type other then T), so just
// having "return &*iterator_;" doesn't work.
// value_ is updated here and not in Advance() because Advance()
// can advance iterator_ beyond the end of the range, and we cannot
// detect that fact. The client code, on the other hand, is
// responsible for not calling Current() on an out-of-range iterator.
virtual const T* Current() const {
if (value_.get() == NULL)
value_.reset(new T(*iterator_));
return value_.get();
}
virtual bool Equals(const ParamIteratorInterface<T>& other) const {
// Having the same base generator guarantees that the other
// iterator is of the same type and we can downcast.
GTEST_CHECK_(BaseGenerator() == other.BaseGenerator())
<< "The program attempted to compare iterators "
<< "from different generators." << std::endl;
return iterator_ ==
CheckedDowncastToActualType<const Iterator>(&other)->iterator_;
}
private:
Iterator(const Iterator& other)
// The explicit constructor call suppresses a false warning
// emitted by gcc when supplied with the -Wextra option.
: ParamIteratorInterface<T>(),
base_(other.base_),
iterator_(other.iterator_) {}
const ParamGeneratorInterface<T>* const base_;
typename ContainerType::const_iterator iterator_;
// A cached value of *iterator_. We keep it here to allow access by
// pointer in the wrapping iterator's operator->().
// value_ needs to be mutable to be accessed in Current().
// Use of scoped_ptr helps manage cached value's lifetime,
// which is bound by the lifespan of the iterator itself.
mutable scoped_ptr<const T> value_;
}; // class ValuesInIteratorRangeGenerator::Iterator
// No implementation - assignment is unsupported.
void operator=(const ValuesInIteratorRangeGenerator& other);
const ContainerType container_;
}; // class ValuesInIteratorRangeGenerator
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// Stores a parameter value and later creates tests parameterized with that
// value.
template <class TestClass>
class ParameterizedTestFactory : public TestFactoryBase {
public:
typedef typename TestClass::ParamType ParamType;
explicit ParameterizedTestFactory(ParamType parameter) :
parameter_(parameter) {}
virtual Test* CreateTest() {
TestClass::SetParam(&parameter_);
return new TestClass();
}
private:
const ParamType parameter_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestFactory);
};
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// TestMetaFactoryBase is a base class for meta-factories that create
// test factories for passing into MakeAndRegisterTestInfo function.
template <class ParamType>
class TestMetaFactoryBase {
public:
virtual ~TestMetaFactoryBase() {}
virtual TestFactoryBase* CreateTestFactory(ParamType parameter) = 0;
};
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// TestMetaFactory creates test factories for passing into
// MakeAndRegisterTestInfo function. Since MakeAndRegisterTestInfo receives
// ownership of test factory pointer, same factory object cannot be passed
// into that method twice. But ParameterizedTestCaseInfo is going to call
// it for each Test/Parameter value combination. Thus it needs meta factory
// creator class.
template <class TestCase>
class TestMetaFactory
: public TestMetaFactoryBase<typename TestCase::ParamType> {
public:
typedef typename TestCase::ParamType ParamType;
TestMetaFactory() {}
virtual TestFactoryBase* CreateTestFactory(ParamType parameter) {
return new ParameterizedTestFactory<TestCase>(parameter);
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestMetaFactory);
};
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// ParameterizedTestCaseInfoBase is a generic interface
// to ParameterizedTestCaseInfo classes. ParameterizedTestCaseInfoBase
// accumulates test information provided by TEST_P macro invocations
// and generators provided by INSTANTIATE_TEST_CASE_P macro invocations
// and uses that information to register all resulting test instances
// in RegisterTests method. The ParameterizeTestCaseRegistry class holds
// a collection of pointers to the ParameterizedTestCaseInfo objects
// and calls RegisterTests() on each of them when asked.
class ParameterizedTestCaseInfoBase {
public:
virtual ~ParameterizedTestCaseInfoBase() {}
// Base part of test case name for display purposes.
virtual const String& GetTestCaseName() const = 0;
// Test case id to verify identity.
virtual TypeId GetTestCaseTypeId() const = 0;
// UnitTest class invokes this method to register tests in this
// test case right before running them in RUN_ALL_TESTS macro.
// This method should not be called more then once on any single
// instance of a ParameterizedTestCaseInfoBase derived class.
virtual void RegisterTests() = 0;
protected:
ParameterizedTestCaseInfoBase() {}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestCaseInfoBase);
};
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// ParameterizedTestCaseInfo accumulates tests obtained from TEST_P
// macro invocations for a particular test case and generators
// obtained from INSTANTIATE_TEST_CASE_P macro invocations for that
// test case. It registers tests with all values generated by all
// generators when asked.
template <class TestCase>
class ParameterizedTestCaseInfo : public ParameterizedTestCaseInfoBase {
public:
// ParamType and GeneratorCreationFunc are private types but are required
// for declarations of public methods AddTestPattern() and
// AddTestCaseInstantiation().
typedef typename TestCase::ParamType ParamType;
// A function that returns an instance of appropriate generator type.
typedef ParamGenerator<ParamType>(GeneratorCreationFunc)();
explicit ParameterizedTestCaseInfo(const char* name)
: test_case_name_(name) {}
// Test case base name for display purposes.
virtual const String& GetTestCaseName() const { return test_case_name_; }
// Test case id to verify identity.
virtual TypeId GetTestCaseTypeId() const { return GetTypeId<TestCase>(); }
// TEST_P macro uses AddTestPattern() to record information
// about a single test in a LocalTestInfo structure.
// test_case_name is the base name of the test case (without invocation
// prefix). test_base_name is the name of an individual test without
// parameter index. For the test SequenceA/FooTest.DoBar/1 FooTest is
// test case base name and DoBar is test base name.
void AddTestPattern(const char* test_case_name,
const char* test_base_name,
TestMetaFactoryBase<ParamType>* meta_factory) {
tests_.push_back(linked_ptr<TestInfo>(new TestInfo(test_case_name,
test_base_name,
meta_factory)));
}
// INSTANTIATE_TEST_CASE_P macro uses AddGenerator() to record information
// about a generator.
int AddTestCaseInstantiation(const char* instantiation_name,
GeneratorCreationFunc* func,
const char* /* file */,
int /* line */) {
instantiations_.push_back(::std::make_pair(instantiation_name, func));
return 0; // Return value used only to run this method in namespace scope.
}
// UnitTest class invokes this method to register tests in this test case
// test cases right before running tests in RUN_ALL_TESTS macro.
// This method should not be called more then once on any single
// instance of a ParameterizedTestCaseInfoBase derived class.
// UnitTest has a guard to prevent from calling this method more then once.
virtual void RegisterTests() {
for (typename TestInfoContainer::iterator test_it = tests_.begin();
test_it != tests_.end(); ++test_it) {
linked_ptr<TestInfo> test_info = *test_it;
for (typename InstantiationContainer::iterator gen_it =
instantiations_.begin(); gen_it != instantiations_.end();
++gen_it) {
const String& instantiation_name = gen_it->first;
ParamGenerator<ParamType> generator((*gen_it->second)());
Message test_case_name_stream;
if ( !instantiation_name.empty() )
test_case_name_stream << instantiation_name.c_str() << "/";
test_case_name_stream << test_info->test_case_base_name.c_str();
int i = 0;
for (typename ParamGenerator<ParamType>::iterator param_it =
generator.begin();
param_it != generator.end(); ++param_it, ++i) {
Message test_name_stream;
test_name_stream << test_info->test_base_name.c_str() << "/" << i;
::testing::internal::MakeAndRegisterTestInfo(
test_case_name_stream.GetString().c_str(),
test_name_stream.GetString().c_str(),
"", // test_case_comment
"", // comment; TODO(vladl@google.com): provide parameter value
// representation.
GetTestCaseTypeId(),
TestCase::SetUpTestCase,
TestCase::TearDownTestCase,
test_info->test_meta_factory->CreateTestFactory(*param_it));
} // for param_it
} // for gen_it
} // for test_it
} // RegisterTests
private:
// LocalTestInfo structure keeps information about a single test registered
// with TEST_P macro.
struct TestInfo {
TestInfo(const char* a_test_case_base_name,
const char* a_test_base_name,
TestMetaFactoryBase<ParamType>* a_test_meta_factory) :
test_case_base_name(a_test_case_base_name),
test_base_name(a_test_base_name),
test_meta_factory(a_test_meta_factory) {}
const String test_case_base_name;
const String test_base_name;
const scoped_ptr<TestMetaFactoryBase<ParamType> > test_meta_factory;
};
typedef ::std::vector<linked_ptr<TestInfo> > TestInfoContainer;
// Keeps pairs of <Instantiation name, Sequence generator creation function>
// received from INSTANTIATE_TEST_CASE_P macros.
typedef ::std::vector<std::pair<String, GeneratorCreationFunc*> >
InstantiationContainer;
const String test_case_name_;
TestInfoContainer tests_;
InstantiationContainer instantiations_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestCaseInfo);
}; // class ParameterizedTestCaseInfo
// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE.
//
// ParameterizedTestCaseRegistry contains a map of ParameterizedTestCaseInfoBase
// classes accessed by test case names. TEST_P and INSTANTIATE_TEST_CASE_P
// macros use it to locate their corresponding ParameterizedTestCaseInfo
// descriptors.
class ParameterizedTestCaseRegistry {
public:
ParameterizedTestCaseRegistry() {}
~ParameterizedTestCaseRegistry() {
for (TestCaseInfoContainer::iterator it = test_case_infos_.begin();
it != test_case_infos_.end(); ++it) {
delete *it;
}
}
// Looks up or creates and returns a structure containing information about
// tests and instantiations of a particular test case.
template <class TestCase>
ParameterizedTestCaseInfo<TestCase>* GetTestCasePatternHolder(
const char* test_case_name,
const char* file,
int line) {
ParameterizedTestCaseInfo<TestCase>* typed_test_info = NULL;
for (TestCaseInfoContainer::iterator it = test_case_infos_.begin();
it != test_case_infos_.end(); ++it) {
if ((*it)->GetTestCaseName() == test_case_name) {
if ((*it)->GetTestCaseTypeId() != GetTypeId<TestCase>()) {
// Complain about incorrect usage of Google Test facilities
// and terminate the program since we cannot guaranty correct
// test case setup and tear-down in this case.
ReportInvalidTestCaseType(test_case_name, file, line);
abort();
} else {
// At this point we are sure that the object we found is of the same
// type we are looking for, so we downcast it to that type
// without further checks.
typed_test_info = CheckedDowncastToActualType<
ParameterizedTestCaseInfo<TestCase> >(*it);
}
break;
}
}
if (typed_test_info == NULL) {
typed_test_info = new ParameterizedTestCaseInfo<TestCase>(test_case_name);
test_case_infos_.push_back(typed_test_info);
}
return typed_test_info;
}
void RegisterTests() {
for (TestCaseInfoContainer::iterator it = test_case_infos_.begin();
it != test_case_infos_.end(); ++it) {
(*it)->RegisterTests();
}
}
private:
typedef ::std::vector<ParameterizedTestCaseInfoBase*> TestCaseInfoContainer;
TestCaseInfoContainer test_case_infos_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestCaseRegistry);
};
} // namespace internal
} // namespace testing
#endif // GTEST_HAS_PARAM_TEST
#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_