216 lines
5.1 KiB
C++
216 lines
5.1 KiB
C++
#ifndef CRYPTOPP_XTR_H
|
|
#define CRYPTOPP_XTR_H
|
|
|
|
/** \file
|
|
"The XTR public key system" by Arjen K. Lenstra and Eric R. Verheul
|
|
*/
|
|
|
|
#include "modarith.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
//! an element of GF(p^2)
|
|
class GFP2Element
|
|
{
|
|
public:
|
|
GFP2Element() {}
|
|
GFP2Element(const Integer &c1, const Integer &c2) : c1(c1), c2(c2) {}
|
|
GFP2Element(const byte *encodedElement, unsigned int size)
|
|
: c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {}
|
|
|
|
void Encode(byte *encodedElement, unsigned int size)
|
|
{
|
|
c1.Encode(encodedElement, size/2);
|
|
c2.Encode(encodedElement+size/2, size/2);
|
|
}
|
|
|
|
bool operator==(const GFP2Element &rhs) const {return c1 == rhs.c1 && c2 == rhs.c2;}
|
|
bool operator!=(const GFP2Element &rhs) const {return !operator==(rhs);}
|
|
|
|
void swap(GFP2Element &a)
|
|
{
|
|
c1.swap(a.c1);
|
|
c2.swap(a.c2);
|
|
}
|
|
|
|
static const GFP2Element & Zero();
|
|
|
|
Integer c1, c2;
|
|
};
|
|
|
|
//! GF(p^2), optimal normal basis
|
|
template <class F>
|
|
class GFP2_ONB : public AbstractRing<GFP2Element>
|
|
{
|
|
public:
|
|
typedef F BaseField;
|
|
|
|
GFP2_ONB(const Integer &p) : modp(p)
|
|
{
|
|
if (p%3 != 2)
|
|
throw InvalidArgument("GFP2_ONB: modulus must be equivalent to 2 mod 3");
|
|
}
|
|
|
|
const Integer& GetModulus() const {return modp.GetModulus();}
|
|
|
|
GFP2Element ConvertIn(const Integer &a) const
|
|
{
|
|
t = modp.Inverse(modp.ConvertIn(a));
|
|
return GFP2Element(t, t);
|
|
}
|
|
|
|
GFP2Element ConvertIn(const GFP2Element &a) const
|
|
{return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));}
|
|
|
|
GFP2Element ConvertOut(const GFP2Element &a) const
|
|
{return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));}
|
|
|
|
bool Equal(const GFP2Element &a, const GFP2Element &b) const
|
|
{
|
|
return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2);
|
|
}
|
|
|
|
const Element& Identity() const
|
|
{
|
|
return GFP2Element::Zero();
|
|
}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{
|
|
result.c1 = modp.Add(a.c1, b.c1);
|
|
result.c2 = modp.Add(a.c2, b.c2);
|
|
return result;
|
|
}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{
|
|
result.c1 = modp.Inverse(a.c1);
|
|
result.c2 = modp.Inverse(a.c2);
|
|
return result;
|
|
}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{
|
|
result.c1 = modp.Double(a.c1);
|
|
result.c2 = modp.Double(a.c2);
|
|
return result;
|
|
}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{
|
|
result.c1 = modp.Subtract(a.c1, b.c1);
|
|
result.c2 = modp.Subtract(a.c2, b.c2);
|
|
return result;
|
|
}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{
|
|
modp.Accumulate(a.c1, b.c1);
|
|
modp.Accumulate(a.c2, b.c2);
|
|
return a;
|
|
}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{
|
|
modp.Reduce(a.c1, b.c1);
|
|
modp.Reduce(a.c2, b.c2);
|
|
return a;
|
|
}
|
|
|
|
bool IsUnit(const Element &a) const
|
|
{
|
|
return a.c1.NotZero() || a.c2.NotZero();
|
|
}
|
|
|
|
const Element& MultiplicativeIdentity() const
|
|
{
|
|
result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity());
|
|
return result;
|
|
}
|
|
|
|
const Element& Multiply(const Element &a, const Element &b) const
|
|
{
|
|
t = modp.Add(a.c1, a.c2);
|
|
t = modp.Multiply(t, modp.Add(b.c1, b.c2));
|
|
result.c1 = modp.Multiply(a.c1, b.c1);
|
|
result.c2 = modp.Multiply(a.c2, b.c2);
|
|
result.c1.swap(result.c2);
|
|
modp.Reduce(t, result.c1);
|
|
modp.Reduce(t, result.c2);
|
|
modp.Reduce(result.c1, t);
|
|
modp.Reduce(result.c2, t);
|
|
return result;
|
|
}
|
|
|
|
const Element& MultiplicativeInverse(const Element &a) const
|
|
{
|
|
return result = Exponentiate(a, modp.GetModulus()-2);
|
|
}
|
|
|
|
const Element& Square(const Element &a) const
|
|
{
|
|
const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1;
|
|
result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2);
|
|
result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1);
|
|
return result;
|
|
}
|
|
|
|
Element Exponentiate(const Element &a, const Integer &e) const
|
|
{
|
|
Integer edivp, emodp;
|
|
Integer::Divide(emodp, edivp, e, modp.GetModulus());
|
|
Element b = PthPower(a);
|
|
return AbstractRing<GFP2Element>::CascadeExponentiate(a, emodp, b, edivp);
|
|
}
|
|
|
|
const Element & PthPower(const Element &a) const
|
|
{
|
|
result = a;
|
|
result.c1.swap(result.c2);
|
|
return result;
|
|
}
|
|
|
|
void RaiseToPthPower(Element &a) const
|
|
{
|
|
a.c1.swap(a.c2);
|
|
}
|
|
|
|
// a^2 - 2a^p
|
|
const Element & SpecialOperation1(const Element &a) const
|
|
{
|
|
assert(&a != &result);
|
|
result = Square(a);
|
|
modp.Reduce(result.c1, a.c2);
|
|
modp.Reduce(result.c1, a.c2);
|
|
modp.Reduce(result.c2, a.c1);
|
|
modp.Reduce(result.c2, a.c1);
|
|
return result;
|
|
}
|
|
|
|
// x * z - y * z^p
|
|
const Element & SpecialOperation2(const Element &x, const Element &y, const Element &z) const
|
|
{
|
|
assert(&x != &result && &y != &result && &z != &result);
|
|
t = modp.Add(x.c2, y.c2);
|
|
result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t));
|
|
modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1)));
|
|
t = modp.Add(x.c1, y.c1);
|
|
result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t));
|
|
modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2)));
|
|
return result;
|
|
}
|
|
|
|
protected:
|
|
BaseField modp;
|
|
mutable GFP2Element result;
|
|
mutable Integer t;
|
|
};
|
|
|
|
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits);
|
|
|
|
GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p);
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif
|