sampler-fork/widgets/runchart.go

512 lines
12 KiB
Go

package widgets
import (
"fmt"
"github.com/sqshq/sampler/console"
"github.com/sqshq/sampler/data"
"image"
"log"
"math"
"strconv"
"sync"
"time"
. "github.com/sqshq/termui"
)
const (
xAxisLegendWidth = 20
xAxisLabelsHeight = 1
xAxisLabelsWidth = 8
xAxisLabelsGap = 2
xAxisGridWidth = xAxisLabelsGap + xAxisLabelsWidth
yAxisLabelsHeight = 1
yAxisLabelsGap = 1
chartHistoryReserve = 5
)
type RunChart struct {
Block
lines []TimeLine
grid ChartGrid
precision int
timescale time.Duration
selection *time.Time
mutex *sync.Mutex
}
type TimePoint struct {
time time.Time
value float64
line *TimeLine
}
type TimeLine struct {
points []TimePoint
color Color
label string
}
type ChartGrid struct {
linesCount int
paddingWidth int
maxTimeWidth int
minTimeWidth int
valueExtremum ValueExtremum
timeExtremum TimeExtremum
}
type TimeExtremum struct {
max time.Time
min time.Time
}
type ValueExtremum struct {
max float64
min float64
}
func NewRunChart(title string, precision int, refreshRateMs int) *RunChart {
block := *NewBlock()
block.Title = title
return &RunChart{
Block: block,
lines: []TimeLine{},
mutex: &sync.Mutex{},
precision: precision,
timescale: calculateTimescale(refreshRateMs),
}
}
func (self *RunChart) newChartGrid() ChartGrid {
linesCount := (self.Inner.Max.X - self.Inner.Min.X - self.grid.minTimeWidth) / xAxisGridWidth
return ChartGrid{
linesCount: linesCount,
paddingWidth: xAxisGridWidth,
maxTimeWidth: self.Inner.Max.X,
minTimeWidth: self.getMaxValueLength(),
timeExtremum: getTimeExtremum(linesCount, self.timescale),
valueExtremum: getChartValueExtremum(self.lines),
}
}
func (self *RunChart) Draw(buffer *Buffer) {
self.mutex.Lock()
self.Block.Draw(buffer)
self.grid = self.newChartGrid()
drawArea := image.Rect(
self.Inner.Min.X+self.grid.minTimeWidth+1, self.Inner.Min.Y,
self.Inner.Max.X, self.Inner.Max.Y-xAxisLabelsHeight-1,
)
selectedPoints := self.getSelectedTimePoints()
self.renderAxes(buffer)
self.renderItems(buffer, drawArea)
self.renderSelection(buffer, drawArea, selectedPoints)
self.renderLegend(buffer, drawArea, selectedPoints)
self.mutex.Unlock()
}
func (self *RunChart) ConsumeSample(sample data.Sample) {
float, err := strconv.ParseFloat(sample.Value, 64)
if err != nil {
log.Printf("Expected float number, but got %v", sample.Value) // TODO visual notification + check sample.Error
}
self.mutex.Lock()
lineIndex := -1
for i, line := range self.lines {
if line.label == sample.Label {
lineIndex = i
}
}
if lineIndex == -1 {
line := &TimeLine{
points: []TimePoint{},
color: sample.Color,
label: sample.Label,
}
self.lines = append(self.lines, *line)
lineIndex = len(self.lines) - 1
}
line := self.lines[lineIndex]
timePoint := TimePoint{value: float, time: time.Now(), line: &line}
line.points = append(line.points, timePoint)
self.lines[lineIndex] = line
self.trimOutOfRangeValues()
self.mutex.Unlock()
}
func (self *RunChart) SelectPoint(x int, y int) {
point := image.Point{X: x, Y: y}
if !point.In(self.Rectangle) {
self.selection = nil
return
}
timeDeltaToPaddingRelation := (self.grid.maxTimeWidth - x) / xAxisGridWidth
timeDeltaWithGridMaxTime := timeDeltaToPaddingRelation * int(self.timescale.Nanoseconds())
selection := self.grid.timeExtremum.max.Add(-time.Duration(timeDeltaWithGridMaxTime) * time.Nanosecond)
self.selection = &selection
}
func (self *RunChart) getSelectedTimePoints() []TimePoint {
selected := []TimePoint{}
if self.selection == nil {
return selected
}
for _, line := range self.lines {
if len(line.points) == 0 {
continue
}
closest := line.points[0]
for _, point := range line.points {
diffWithClosest := math.Abs(float64(self.selection.UnixNano() - closest.time.UnixNano()))
diffWithCurrent := math.Abs(float64(self.selection.UnixNano() - point.time.UnixNano()))
if diffWithClosest > diffWithCurrent {
closest = point
}
}
selected = append(selected, closest)
}
return selected
}
func (self *RunChart) trimOutOfRangeValues() {
historyReserve := self.timescale * time.Duration(self.grid.linesCount) * chartHistoryReserve
minRangeTime := self.grid.timeExtremum.min.Add(-historyReserve)
for i, item := range self.lines {
lastOutOfRangeValueIndex := -1
for j, point := range item.points {
if point.time.Before(minRangeTime) {
lastOutOfRangeValueIndex = j
}
}
if lastOutOfRangeValueIndex > 0 {
item.points = append(item.points[:0], item.points[lastOutOfRangeValueIndex+1:]...)
self.lines[i] = item
}
}
}
func (self *RunChart) renderItems(buffer *Buffer, drawArea image.Rectangle) {
canvas := NewCanvas()
canvas.Rectangle = drawArea
for _, line := range self.lines {
xToPoint := make(map[int]image.Point)
pointsOrder := make([]int, 0)
for _, timePoint := range line.points {
timeDeltaWithGridMaxTime := self.grid.timeExtremum.max.Sub(timePoint.time).Nanoseconds()
timeDeltaToPaddingRelation := float64(timeDeltaWithGridMaxTime) / float64(self.timescale.Nanoseconds())
x := self.grid.maxTimeWidth - (int(float64(xAxisGridWidth) * timeDeltaToPaddingRelation))
var y int
if self.grid.valueExtremum.max-self.grid.valueExtremum.min == 0 {
y = (drawArea.Dy() - 2) / 2
} else {
valuePerY := (self.grid.valueExtremum.max - self.grid.valueExtremum.min) / float64(drawArea.Dy()-2)
y = int(float64(timePoint.value-self.grid.valueExtremum.min) / valuePerY)
}
point := image.Pt(x, drawArea.Max.Y-y-1)
if _, exists := xToPoint[x]; exists {
continue
}
if !point.In(drawArea) {
continue
}
xToPoint[x] = point
pointsOrder = append(pointsOrder, x)
}
for i, x := range pointsOrder {
currentPoint := xToPoint[x]
var previousPoint image.Point
if i == 0 {
previousPoint = currentPoint
} else {
previousPoint = xToPoint[pointsOrder[i-1]]
}
canvas.Line(
braillePoint(previousPoint),
braillePoint(currentPoint),
line.color,
)
}
}
canvas.Draw(buffer)
}
func (self *RunChart) renderAxes(buffer *Buffer) {
// draw origin cell
buffer.SetCell(
NewCell(BOTTOM_LEFT, NewStyle(ColorWhite)),
image.Pt(self.Inner.Min.X+self.grid.minTimeWidth, self.Inner.Max.Y-xAxisLabelsHeight-1),
)
// draw x axis line
for i := self.grid.minTimeWidth + 1; i < self.Inner.Dx(); i++ {
buffer.SetCell(
NewCell(HORIZONTAL_DASH, NewStyle(ColorWhite)),
image.Pt(i+self.Inner.Min.X, self.Inner.Max.Y-xAxisLabelsHeight-1),
)
}
// draw grid lines
for y := 0; y < self.Inner.Dy()-xAxisLabelsHeight-2; y = y + 2 {
for x := 1; x <= self.grid.linesCount; x++ {
buffer.SetCell(
NewCell(VERTICAL_DASH, NewStyle(console.ColorDarkGrey)),
image.Pt(self.grid.maxTimeWidth-x*xAxisGridWidth, y+self.Inner.Min.Y+1),
)
}
}
// draw y axis line
for i := 0; i < self.Inner.Dy()-xAxisLabelsHeight-1; i++ {
buffer.SetCell(
NewCell(VERTICAL_DASH, NewStyle(ColorWhite)),
image.Pt(self.Inner.Min.X+self.grid.minTimeWidth, i+self.Inner.Min.Y),
)
}
// draw x axis time labels
for i := 1; i <= self.grid.linesCount; i++ {
labelTime := self.grid.timeExtremum.max.Add(time.Duration(-i) * self.timescale)
buffer.SetString(
labelTime.Format("15:04:05"),
NewStyle(ColorWhite),
image.Pt(self.grid.maxTimeWidth-xAxisLabelsWidth/2-i*(xAxisGridWidth), self.Inner.Max.Y-1),
)
}
// draw y axis labels
if self.grid.valueExtremum.max != self.grid.valueExtremum.min {
labelsCount := (self.Inner.Dy() - xAxisLabelsHeight - 1) / (yAxisLabelsGap + yAxisLabelsHeight)
valuePerY := (self.grid.valueExtremum.max - self.grid.valueExtremum.min) / float64(self.Inner.Dy()-xAxisLabelsHeight-3)
for i := 0; i < int(labelsCount); i++ {
value := self.grid.valueExtremum.max - (valuePerY * float64(i) * (yAxisLabelsGap + yAxisLabelsHeight))
buffer.SetString(
formatValue(value, self.precision),
NewStyle(ColorWhite),
image.Pt(self.Inner.Min.X, 1+self.Inner.Min.Y+i*(yAxisLabelsGap+yAxisLabelsHeight)),
)
}
} else {
buffer.SetString(
formatValue(self.grid.valueExtremum.max, self.precision),
NewStyle(ColorWhite),
image.Pt(self.Inner.Min.X, self.Inner.Dy()/2))
}
}
func (self *RunChart) renderLegend(buffer *Buffer, rectangle image.Rectangle, selectedPoints []TimePoint) {
for i, line := range self.lines {
buffer.SetString(
string(DOT),
NewStyle(line.color),
image.Pt(self.Inner.Max.X-xAxisLegendWidth-2, self.Inner.Min.Y+1+i*5),
)
buffer.SetString(
fmt.Sprintf("%s", line.label),
NewStyle(line.color),
image.Pt(self.Inner.Max.X-xAxisLegendWidth, self.Inner.Min.Y+1+i*5),
)
if len(selectedPoints) > 0 {
index := -1
for i, p := range selectedPoints {
if p.line.label == line.label {
index = i
}
}
if index != -1 {
buffer.SetString(
fmt.Sprintf("time: %v", selectedPoints[index].time.Format("15:04:05.000")),
NewStyle(ColorWhite),
image.Pt(self.Inner.Max.X-xAxisLegendWidth, self.Inner.Min.Y+2+i*5),
)
buffer.SetString(
fmt.Sprintf("value: %s", formatValue(selectedPoints[index].value, self.precision)),
NewStyle(ColorWhite),
image.Pt(self.Inner.Max.X-xAxisLegendWidth, self.Inner.Min.Y+3+i*5),
)
}
} else {
extremum := getLineValueExtremum(line.points)
buffer.SetString(
fmt.Sprintf("cur %s", formatValue(line.points[len(line.points)-1].value, self.precision)),
NewStyle(ColorWhite),
image.Pt(self.Inner.Max.X-xAxisLegendWidth, self.Inner.Min.Y+2+i*5),
)
buffer.SetString(
fmt.Sprintf("max %s", formatValue(extremum.max, self.precision)),
NewStyle(ColorWhite),
image.Pt(self.Inner.Max.X-xAxisLegendWidth, self.Inner.Min.Y+3+i*5),
)
buffer.SetString(
fmt.Sprintf("min %s", formatValue(extremum.min, self.precision)),
NewStyle(ColorWhite),
image.Pt(self.Inner.Max.X-xAxisLegendWidth, self.Inner.Min.Y+4+i*5),
)
}
}
}
func (self *RunChart) renderSelection(buffer *Buffer, drawArea image.Rectangle, selectedPoints []TimePoint) {
for _, timePoint := range selectedPoints {
timeDeltaWithGridMaxTime := self.grid.timeExtremum.max.Sub(timePoint.time).Nanoseconds()
timeDeltaToPaddingRelation := float64(timeDeltaWithGridMaxTime) / float64(self.timescale.Nanoseconds())
x := self.grid.maxTimeWidth - (int(float64(xAxisGridWidth) * timeDeltaToPaddingRelation))
var y int
if self.grid.valueExtremum.max-self.grid.valueExtremum.min == 0 {
y = (drawArea.Dy() - 2) / 2
} else {
valuePerY := (self.grid.valueExtremum.max - self.grid.valueExtremum.min) / float64(drawArea.Dy()-2)
y = int(float64(timePoint.value-self.grid.valueExtremum.min) / valuePerY)
}
point := image.Pt(x, drawArea.Max.Y-y-1)
if point.In(drawArea) {
buffer.SetCell(NewCell('▲', NewStyle(timePoint.line.color)), point)
}
}
}
func (self *RunChart) getMaxValueLength() int {
maxValueLength := 0
for _, line := range self.lines {
for _, point := range line.points {
l := len(formatValue(point.value, self.precision))
if l > maxValueLength {
maxValueLength = l
}
}
}
return maxValueLength
}
func formatValue(value float64, precision int) string {
format := "%." + strconv.Itoa(precision) + "f"
return fmt.Sprintf(format, value)
}
func getChartValueExtremum(items []TimeLine) ValueExtremum {
if len(items) == 0 {
return ValueExtremum{0, 0}
}
var max, min = -math.MaxFloat64, math.MaxFloat64
for _, item := range items {
for _, point := range item.points {
if point.value > max {
max = point.value
}
if point.value < min {
min = point.value
}
}
}
return ValueExtremum{max: max, min: min}
}
func getLineValueExtremum(points []TimePoint) ValueExtremum {
if len(points) == 0 {
return ValueExtremum{0, 0}
}
var max, min = -math.MaxFloat64, math.MaxFloat64
for _, point := range points {
if point.value > max {
max = point.value
}
if point.value < min {
min = point.value
}
}
return ValueExtremum{max: max, min: min}
}
func getTimeExtremum(linesCount int, scale time.Duration) TimeExtremum {
maxTime := time.Now()
return TimeExtremum{
max: maxTime,
min: maxTime.Add(-time.Duration(scale.Nanoseconds() * int64(linesCount))),
}
}
func calculateTimescale(refreshRateMs int) time.Duration {
multiplier := refreshRateMs * xAxisGridWidth / 2
timescale := time.Duration(time.Millisecond * time.Duration(multiplier)).Round(time.Second)
if timescale.Seconds() == 0 {
return time.Second
} else {
return timescale
}
}